41 resultados para black metal
Resumo:
This letter addresses the issue of deformation mechanisms and mechanical tensile behavior of the twinned metal nanowires using atomistic simulations. Free surfaces are always the preferential dislocation nucleation sites in the initial inelastic deformation stage, while with further plastic deformation, twin boundary interfaces will act as sources of dislocations with the assistance of the newly formed defects. The smaller the twin boundary spacing, the higher the yielding stresses of the twinned nanowires. Twin boundaries, which serve both as obstacles to dislocation motion and dislocation sources, can lead to hardening effects and contribute to the tensile ductility. This work illustrates that the mechanical properties of metal nanowires could be controlled by tailoring internal growth twin structures. (c) 2007 American Institute of Physics.
Resumo:
A study of the two-dimensional flow pattern of particles in consolidation process under explosive-implosive shock waves has been performed to further understand the mechanism of shock-wave consolidation of metal powder, in which bunched low-carbon steel wires were used instead of powder. Pressure in the compact ranges from 6 to 30 GPa. Some wires were electroplated with brass, some pickled. By this means, the flow pattern at particle surfaces was observed. The interparticle bonding and microstructure have been investigated systematically for the consolidated specimens by means of optical and electron microscopy, as well as by microhardness. The experimental results presented here are qualitatively consistent with Williamson's numerical simulation result when particle arrangement is close packed, but yield more extensive information. The effect of surface condition of particle on consolidation quality was also studied in order to explore ways of increasing the strength of the compacts. Based on these experiments, a physical model for metal powder shock consolidation has been established.
Resumo:
Short fatigue crack behaviour in a weld metal has been further investigated. The Schmid factor and the fractal dimension of short cracks on iso-stress specimens subjected to reversed bending have been determined and then applied to account for the distribution and orientation characteristics of short fatigue cracks. The result indicates that the orientation preference of short cracks is attributed to the large values of Schmid factor at relevant grains. The Schmid factors of most slip systems, which produced short cracks, are less than or equal to 0.4. Crack length measurements reveal that short crack path, compared to that of long crack, possesses a more stable and relatively larger value of fractal dimension. This is regarded as one of the typical features of short cracks.
Resumo:
Fatigue tests were performed using a purpose designed triangular shaped specimen to investigate the initiation and propagation of short fatigue cracks in a weld metal. It was observed that short fatigue cracks evolved from slip bands and were predominantly within ferrite grains. As the test progressed, the short crack density increased with minor changes in crack length. The growth of short cracks, in the early stage resulted mainly from coalescence with other existing cracks. The mechanism of short crack behaviour is discussed.
Resumo:
Low-energy laser-heating techniques are widely used in engineering applications such as, thinfilm deposition, surface treatment, metal forming and micro-structural pattern formation. In this paper,under the conditions of ignoring the thermo-mechanical coupling, a numerical simulation on the spatialand temporal temperature distribution in a sheet metal produced by the laser beam scanning in virtue of thefinite element method is presented. Both the three-dimensional transient temperature field and thetemperature evolution as a function of heat penetrating depth in the metal sheet are calculated. Thetemperature dependence of material properties was taken into account. It was shown that, after taking thetemperature dependence of the material absorbance effect into consideration, the temperature change ratealong the scanning direction and the temperature maximum were both increased.
Resumo:
In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.
Resumo:
In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.
Resumo:
Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.
Resumo:
Cohesive zone characterizations of the interface between metal film and ceramic substrate at micro- and nano-scales are performed in the present research. At the nano-scale, a special potential for special material interface (Ag/MgO) is adopted to investigate the interface separation mechanism by using MD simulation, and stress-separation relationship will be obtained. At the micro-scale, peeling experiment is performed for the Al film/Al2O3 substrate system with an adhesive layer at the interface. Adhesive is a mixture of epoxy and polyimide with mass ratio 1:1, by which a brittle cohesive property is obtained. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling. The experimental result has a similar trend as modeling result for a weak adhesion interface case.
Resumo:
The mechanical behaviors of the ceramic particle-reinforced metal matrix composites are modeled based on the conventional theory of mechanism-based strain gradient plasticity presented by Huang et al. Two cases of interface features with and without the effects of interface cracking will be analyzed, respectively. Through comparing the result based on the interface cracking model with experimental result, the effectiveness of the present model can be evaluated. Simultaneously, the length parameters included in the strain gradient plasticity theory can be obtained.