157 resultados para amorphous solids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for displacement-controlled indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. While the same expression is well known for indentation in elastic and in elastic–plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. When the unloading rate is slow, a “hold” period between loading and unloading can be used to provide a correction term for the initial unloading slope equation. Finite element calculations are used to illustrate the methods of fast unloading and “hold-at-the-maximum-indenter-displacement” for determining the instantaneous modulus using spherical indenters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a comparative study of shear banding in BMGs resulting from thermal softening and free volume creation. Firstly, the effects of thermal softening and free volume creation on shear instability are discussed. It is known that thermal softening governs thermal shear banding, hence it is essentially energy related. However, compound free volume creation is the key factor to the other instability, though void-induced softening seems to be the counterpart of thermal softening. So, the driving force for shear instability owing to free volume creation is very different from the thermally assisted one. In particular, long wave perturbations are always unstable owing to compound free volume creation. Therefore, the shear instability resulting from coupled compound free volume creation and thermal softening may start more like that due to free volume creation. Also, the compound free volume creation implies a specific and intrinsic characteristic growth time of shear instability. Finally, the mature shear band width is governed by the corresponding diffusions (thermal or void diffusion) within the band. As a rough guide, the dimensionless numbers: Thermal softening related number B, Deborah number (denoting the relation of instability growth rate owing to compound free volume and loading time) and Lewis number (denoting the competition of different diffusions) show us their relative importance of thermal softening and free volume creation in shear banding. All these results are of particular significance in understanding the mechanism of shear banding in bulk metallic glasses (BMGs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation and mechanical properties of amorphous copper are studied using molecular dynamics simulation. The simulations of tension and shearing show that more pronounced plasticity is found under shearing, compared to tension. Apparent strain hardening and strain rate effect are observed. Interestingly, the variations of number density of atoms during deformation indicate free volume creation, especially under higher strain rate. In particular, it is found that shear induced dilatation does appear in the amorphous metal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The finite element method was used to simulate the conical indentation of elastic-plastic solids with work hardening. The ratio of the initial yield strength to the Young's modulus Y/E ranged from 0 to 0.02. Based on the calculation results, two sets of scaling functions for non-dimensional hardness H/K and indenter penetration h are presented in the paper, which have closed simple mathematical form and can be used easily for engineering application. Using the present scaling functions, indentation hardness and indentation loading curves can be easily obtained for a given set of material properties. Meanwhile one can use these scaling functions to obtain material parameters by an instrumented indentation load-displacement curve for loading and unloading if Young's modulus E and Poisson's ratio nu are known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An embedded cell model is presented to obtain the effective elastic moduli for three-dimensional two-phase composites which is an exact analytic formula without any simplified approximation and can be expressed in an explicit form. For the different cells such as spherical inclusions and cracks surrounded by sphere and oblate ellipsoidal matrix, the effective elastic moduli are evaluated and the results are compared with those from various micromechanics models. These results show that the present model is direct, simple and efficient to deal with three-dimensional tyro-phase composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thick amorphous alloy (a-alloy) coating was synthesized by laser cladding. The a-alloy had a multicomponent chemistry, i.e., Ni66Cr5MO4Zr6P15B4 (in atom%). The maximum thickness of the coating is 0.8 mm. The a-alloy coating had large glass-forming ability (GFA) with wide supercooled liquid region (SLR) ranging from 52 to 61 K through the coating. The reason for high GFA in the a-alloy coating was discussed. (C) 2002 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple relationship between the initial unloading slope, the contact area, and the elastic modulus is derived for indentation in elastic-plastic solids by an indenter with an arbitrary axisymmetric smooth profile. Although the same expression was known to hold for elastic solids, the new derivation shows that it is also true for elastic-plastic solids with or without work hardening and residual stress. These results should provide a sound basis for the use of the relationship for mechanical property determination using indentation techniques. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study phonon properties of one-dimensional nanocrystalline solids that are associated with a model nanostructured sequence. A real-space renormalization-group approach, connected with a series of renormalization-group transformations, is developed to calculate numerically the local phonon Green's function at an arbitrary site, and then the phonon density of states of these kinds of nanocrystalline chains. Some interesting phonon properties of nanocrystalline chains are obtained that are in qualitative agreement with the experimental results for the optical-absorption spectra of nanostructured solids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed analysis of kinking of an interface crack between two dissimilar anisotropic elastic solids is presented in this paper. The branched crack is considered as a distributed dislocation. A set of the singular integral equations for the distribution function of the dislocation density is developed. Explicit formulas of the stress intensity factors and the energy release rates for the branched crack are given for orthotropic bimaterials and misoriented orthotropic bicrystals. The role of the stress parallel to the interface, sigma0 is taken into account in these formulas. The interface crack can advance either by continued extension along the interface or by kinking out of the interface into one of the adjoining materials. This competition depends on the ratio of the energy release rates for interface cracking and for kinking out of the interface and the ratio of interface toughness to substrate toughness. Throughout the paper, the influences of the inplane stress sigma0 on the stress intensity factors and the energy release rates for the branched crack, which can significantly alter the conditions for interface cracking, are emphasized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a micromechanics analysis of the elastic solids weakened by a large number of microcracks in a plane problem. A new cell model is proposed. Each cell is an ellipse subregion and contains a microcrack. The effective moduli and the stress intensity factors for an ellipse cell are obtained. The analytic closed formulas of concentration factor tensor for an isotropic matrix containing an anisotropic inclusion are derived. Based on a self-consistent method, the effective elastic moduli of the solids weakened by randomly oriented microcracks are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of direct measurement of temperature in shock-loaded, nonmetallic solids within microseconds using a foil thermocouple of 200 Å thickness has been studied over a range of pressure from 0.5 to 4 GPa. The foil thermocouple and thermopile (200 Å thickness) were designed and used to measure the temperature rise in shock-compressed polymethylmethacrylate (PMMA). The method used to manufacture the gauges is spelled out in detail in this paper. The results agree with calculated PMMA temperatures when the shock pressure is below 2.2 GPa. Above this pressure the measured temperature rise is far higher than the calculated values. This result appears to be very similar to that obtained earlier by Bloomquist and Sheffield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for displacement-controlled indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. While the same expression is well known for indentation in elastic and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. When the unloading rate is slow, a "hold" period between loading and unloading can be used to provide a correction term for the initial unloading slope equation. Finite element calculations are used to illustrate the methods of fast unloading and "hold-at-the-maximum-indenter-displacement" for determining the instantaneous modulus using spherical indenters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using analytical and finite element modeling, we examine the relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in viscoelastic solids with either displacement or load as the independent variable. We then investigate whether the Oliver-Pharr method for determining the contact depth and contact radius, originally proposed for indentation in elastic and elastic-plastic solids, is applicable to spherical indentation in viscoelastic solids. Finally, the analytical and numerical results are used to answer questions raised in recent literature about measuring viscoelastic properties from instrumented spherical indentation experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive contact model between an elastic cylinder and an elastic half space is studied in the present paper, in which an external pulling force is acted on the above cylinder with an arbitrary direction and the contact width is assumed to be asymmetric with respect to the structure. Solutions to the asymmetric model are obtained and the effect of the asymmetric contact width on the whole pulling process is mainly discussed. It is found that the smaller the absolute value of Dundurs' parameter beta or the larger the pulling angle theta, the more reasonable the symmetric model would be to approximate the asymmetric one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization is achieved in amorphous Ge2Sb2Te5 films upon irradiation with a single femtosecond laser pulse. Transmission electron microscopy images evidence the morphology of the crystallized spot which depends on the fluence of the ferntosecond laser pulse. Fine crystalline grains are induced at low fluence, and the coarse crystalline grains are obtained at high fluence. At the damage fluence, ablation of the films occurs. (C) 2004 Elsevier Ltd. All rights reserved.