38 resultados para ambient incubation
Resumo:
As a large conspicuous intertidal brown alga, individuals of Sargassum horneri can reach a length of more than 7 m with a fresh weight of 3 kg along the coasts of the Eastern China Sea. The biomass of this alga as a vital component in coastal water ecology has been well documented. In recent years, a steady disappearance of the algal biomass along the once densely populated coastal areas of the Eastern China Sea has drawn attention in China. Efforts have been made to reconstruct the subtidal algal flora or even to grow the alga by use of long-lines. As part of the efforts to establish an efficient technique for producing seedlings of S. horneri, in this investigation a series of culture experiments were carried out in indoor raceway and rectangular tanks under reduced solar irradiance at ambient temperature in 2007-2008. The investigation demonstrated that: (1) sexual reproduction of S. horneri could be accelerated in elevated temperature and light climates, at least 3 months earlier than in the wild; (2) eggs of S. horneri had the potential to be fertilized up to 48 h, much longer than that of known related species; (3) suspension and fixed culture methods were both effective in growing the seedlings to the long-line cultivation stage; and (4) the life cycle of S. horneri in culture could be shortened to 4.5 months, thus establishing this alga as an appropriate model for investigating sexual reproduction in dieocious species of this genus.
Resumo:
Commercial cultivation of the dioecious brown macroalga Hizikia fusiformis (Harvey) Okamura in East Asia depends on the supply of young seedlings from regenerated holdfasts or from wild population. Recent development of synchronized release of male and female gametes in tumble culture provides a possibility of mass production of young seedlings via sexual reproduction. In this paper, we demonstrate that controlled fertilization can be efficiently realized in ambient light and temperature in a specially designed raceway tank in which the sperm-containing water has been recirculated. The effective fertilization time of eggs by sperm was found to be within six hours. Fast growth and development of the young seedlings relied on the presence of water currents. Velocity tests demonstrated that young seedlings of 2-3 mm in length could withstand a water current of 190 cm s(-1) stop without detachment. Culture experiments at 24 h postfertilization showed that elongation of both the seedlings and their rhizoids were not hampered by high irradiance up to 600 mu mol photons m(-2) stop s(-1) stop. However, growth was slightly retarded if cultured at a temperature of 16 degrees C compared to other culture temperatures of 22, 25 and 29 degrees C. No seedling detachment was observed after transfer of the young seedlings to raft cultivation in the sea after one and 1.5 months post-fertilization, indicating the feasibility of obtaining large quantity of seedlings in such a system.
Resumo:
There is excess nitrate (NO3) in the Pearl River coastal plume in the southern waters of Hong Kong in summer. We hypothesize that phosphorus (P) limitation controls the utilization of excess NO3 due to the high N:P ratio in the Pearl River. To test this hypothesis, we conducted two 1-day cruises on July 13 and 19, 2000 to examine the response of the phytoplankton to P additions with respect to changes in biomass, uptake of nutrients and nutrient uptake ratios using a batch incubation of natural water samples collected from the Pearl River estuary and adjacent coastal waters. At a station (E1, salinity =5) in the Pearl River estuary, the N/P ratio at the surface was 46:1, (64 muM DIN: 1.3 muM PO4) and decreased to 24:1 (12 muM DIN: 0.5 muM PO4) downstream at a station (Stn 26, salinity =26) in the coastal plume south of Hong Kong. Without a P addition, NO3 in the water samples collected at E1 could not be depleted during a 9 day incubation (similar to20 muM NO3 remaining). With a P addition, NO3 disappeared completely on day 6 with the depletion of the added PO4 (2-3 muM). This was also true for a station, E4 (salinity= 15) further downstream, but within the estuary. At Stn 26, in the coastal plume south of Hong Kong, NO3 (similar to11.5 muM) was eventually depleted without the addition of PO4, but it took 8 days instead of 5 days for Stn E4. The uptake ratio of dissolved inorganic nitrogen (DIN) to PO4, without a P addition was 51:1, 43:1 and 46:1 for Stns E1, E4 and 26, respectively. With a P addition, the DIN/PO4 uptake ratio decreased to 20:1, 14:1 and 12:1, respectively, for the 3 stations. These results clearly indicate potential P limitation to utilization of NO3 in the Pearl River estuary, resulting in excess NO3 in waters of the coastal plume downstream of the estuary, some of which would eventually be transported offshore. High uptake ratios of N:P without a P addition (43N:1P) suggest that phytoplankton have a nitrogen uptake capacity in excess of the Redfield ratio of 16N: 1P by 2.5-3 times. The value of 2.5-3 times was likely a maximum that should have contained a contribution of P released from desorption of P from sediments or from regeneration by zooplankton grazing and bacterial activity during the incubation of natural water samples. Without a P addition, however, phytoplankton biomass did not increase. This means that P turnover rates or regeneration may allow phytoplankton to take up additional N in excess of the Redfield ratio and store it, but without increasing the algal biomass. Therefore, high ambient N:P ratios in excess of the Redfield ratio do indicate potential P limitation to phytoplankton biomass in this estuarine coastal ecosystem. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Red tides (high biomass phytoplankton blooms) have frequently occurred in Hong Kong waters, but most red tides occurred in waters which are not very eutrophic. For example, Port Shelter, a semi-enclosed bay in the northeast of Hong Kong, is one of hot spots for red tides. Concentrations of ambient inorganic nutrients (e.g. N, P), are not high enough to form the high biomass of chlorophyll a (chl a) in a red tide when chl a is converted to its particulate organic nutrient (N) (which should equal the inorganic nutrient, N). When a red tide of the dinoflagellate Scrippsiella trochoidea occurred in the bay, we found that the red tide patch along the shore had a high cell density of 15,000 cells ml(-1), and high chl a (56 mu g l(-1)), and pH reached 8.6 at the surface (8.2 at the bottom), indicating active photosynthesis in situ. Ambient inorganic nutrients (NO3, PO4, SiO4, and NH4) were all low in the waters and deep waters surrounding the red tide patch, suggesting that the nutrients were not high enough to support the high chl a >50 mu g l(-1) in the red tide. Nutrient addition experiments showed that the addition of all of the inorganic nutrients to a non-red-tide water sample containing low concentrations of Scrippsiella trochoidea did not produce cell density of Scrippsiella trochoidea as high as in the red tide patch, suggesting that nutrients were not an initializing factor for this red tide. During the incubation of the red tide water sample without any nutrient addition, the phytoplankton biomass decreased gradually over 9 days. However, with a N addition, the phytoplankton biomass increased steadily until day 7, which suggested that nitrogen addition was able to sustain the high biomass of the red tide for a week with and without nutrients. In contrast, the red tide in the bay disappeared on the sampling day when the wind direction changed. These results indicated that initiation, maintenance and disappearance of the dinoflagellate Scrippsiella trochoidea red tide in the bay were not directly driven by changes in nutrients. Therefore, how nutrients are linked to the formation of red tides in coastal waters need to be further examined, particularly in relation to dissolved organic nutrients. (C) 2008 Elsevier B.V. All rights reserved.