339 resultados para ZIEGLER-NATTA POLYMERIZATION
Resumo:
聚乙烯是广泛应用的合成高分子材料之一,工业化己有几十年历史,为适应不断扩展的加工及应用的要求,氧化降解反应一直是较活跃的研究领域。目前为止,一些氧化降解的规律和机理已经确定,某些还在积极地研究探索之中。茂金属线性低密度聚乙烯(m-LLDPE)是进入九十年代以后才出现的采用新型茂金属催化剂催化合成的树脂,与传统 Ziegler-Natta线性低密度聚乙烯(LLDPE)相比,其具有分子量分布窄,共聚单体在主链中分布均匀的特点,决定了它具有比传统LLDPE更加优异的使用性能,因而在生产生活中得到广泛应用。目前对其氧化降解的研究较少,因此对m-LLDPE的氧化及稳定性的研究对指导其应用有着积极的意义。本论文选择催化剂和共聚单体类型不同的三种m-LLDPE和两种传统LLDPE对比研究了m-LLDPE的光氧化和热力学降解稳定性,而且研究了过渡金属化合物光敏化剂对它的热力学降解的影响,热力学降解和光敏化剂对m-LLDPE的光、热氧化稳定性的影响。化测试方法表征m-LLDPE的光氧俐反应,长时间光氧化后支化度和结晶度都有不同程度的上升,光氧化速率主要受亚乙烯基双链浓度的影响,受支化度的影响不明显。因此在合成m-LLDPE的过程中应该合理设计茂金属催化剂,降低聚合产品中亚乙烯基双键的浓度,提高它的光氧化稳定性。采用熔体流动速率、流变法和红外光谱法研究了m-LLDPE和传统LLDPE在密炼过程中的热力学降解反应,和光敏化剂对热力学降解反应的影响,利用氧化诱导温度法快速表征热力学降解对m-LLDPE和LLDPE的氧化稳定性的影响,并利用自然光曝晒测试碳基指数和力学性能的变化和热氧化观察脆化时间的方法研究了热力学降解对它们的光、热氧化稳定性的影响,为m-LLDPE在气候条件下应用提供理论依据。共聚单体类型相同的m-LLDPEI和m-LLDPEZ相比较,m-LLDPEI在热力学降解过程中生成更多的氧化产物,光敏化剂硬脂酸钻和乙酰基丙酮钻对m-LLDPEI热力学降解生成氧化产物的敏化作用更强,也更显著地降低了密炼后样品的氧化诱导温度。流变法不仅表征了m-LLDPEI热力学降解过程中的分子结构的变化,也反映了样品的热稳定性。共聚单体类型不同的m-LLDPE3和LLDPEZ相比较,热力学降解后熔体流动速率下降得多,但拨基指数上升较少,这是m-LLDPE3密炼过程中熔融粘度较高的原因。光敏化剂更强烈得增强了LLDPE2的热力学降解过程中氧化产物的形成。热力学降解明显的降低了 LLDPE2的光氧化稳定性而没有对m-LLDPE3的光氧化稳定性产生明显作用,同时敏化剂对LLDPE2的光氧化敏化作用也更强烈一些。本文还研究了光敏化剂硬脂酸钻和硬脂酸铁对三种共聚单体类型不同的传统LLDPE和LDPE的光敏化效果,发现光敏化剂对不同链结构的聚乙烯的光敏化效果存在很大的差异,光敏化作用的顺序为:乙烯一辛烯共聚LLDPE<乙烯一丁烯共聚LLDPE<LDPE,光敏化效果并不随敏化剂浓度的增大而增强。从红外光谱可以分析聚乙烯中亚乙烯基浓度越高,光照过程中形成的氢过氧化物浓度越高,光敏化剂的敏化效果越强。
Resumo:
本文首先对过渡金属(十一区和d-区)烷氧基型Ziegler-Natta催化剂的研究作了简单回顾。在此基础上,合成了迄今未见报导的Nd(OR)_(3-m)Cl_m-AlEt_3二元催化体系,并通过一系列的基本实验,从多方面考查了该催化体系对共轭双烯的聚合规律以及所得聚合物的微观结构。基于这此研究。进而发现了聚共轭双烯的微观结构和Ziegler-Natta催化剂中卤素-过渡金属键上电子对的偏移程度有关,如果以“诱导效应指数”(它是只和催化剂结构以及构成该催化剂的原子的电负性及共价半径有关的常数)来表示这种电子对的偏移,则微观结构和诱导效应指数成线性关系。对文献数据的处理,进一步地证实了这一结论。
Resumo:
本工作通过较系统地研究Ziegler-Natta型钼催化体系对丁二烯聚合的催化作用,发现一类活性很高的钼催化剂。此类催化剂以无毒,资源丰富的加氢汽油为溶剂,活性已接近工业化的Ni、Co、Ti等体系。同时,本工作又找到了大幅度调节聚合物分子量和链结构的方法,发现了具有活性聚合特点的钼催化体系,初步考察了钼体系催化丁二烯聚合的动力学行为;并利用红外光谱,~(13)C-NRM、X-射线衍射和热分析等方法研究了所得聚合物的链结构和聚集态结构,对聚合物的基本性能也进行了初步考察,发现所得聚合物的一些基本性能超过天然橡胶。此类高活性钼催化剂由MoCl_4OR和(i-Bu)_2AlOAr组成,R为C_(8-18)烷基,Ar为芳基。本催化体系在70 ℃下催化丁二烯聚合时,催化剂用量为Mo/J摩尔比等于4 * 10~(-5)时,转化率可达78%。本体系聚合物分子量可用烯丙基卤等调节,其中烯丙基碘的效果最好。在Mo/J = 8 * 10~(-5)时,烯丙基碘/Mo摩尔比为0.1时即可使聚合物分子量下降约50万;烯丙基碘/Mo摩尔比为10时,聚合物重均分子量即小于20万(不加烯丙基碘为270万)。本体系聚合物分子量分布很窄,聚合温度为30 - 70 ℃时,
Resumo:
本工作对下面两种端乙炔基芳醚砜单体的核磁共振谱进行了研究。通过加入位移试剂Eu(fod)_3引起共振吸收峰化学位移值的变化趋热及同核去偶,'H选择质子去偶的方法分别对其'H谱和~(13)C谱(COM)做了归属。在确认对化合物<I>'H谱和~(13)C谱(COM)归属的基础上,演绎出三种苯环上取代基团的'H和~(13)C化学位移取代参数。这些基团的取代参数目前在文献中尚未见报导,用这些参数来计算化的<II>的'H和~(13)C谱(COM)化学位移值时,与观测值有较好的吻合。本工作对双[4-(4-乙炔基苯氧基)苯基]砜的溶液聚合反就(DMSO)作溶剂、PdCl_2·2DMSO作催化剂)进行了研究。采用高压液体色谱和旋转薄层色谱分离反应的各种中间产物,通过中间产物的红外和'HNMR谱变化,演绎聚合反应的历程,还在'H核磁谱仪样品管内做了短时间反应,跟踪记录反应信息。聚合产物自始至终可分为溶于二氯甲烷和不溶于二氯甲烷两部分。在整个反应过程中,可溶性产物逐渐转变成不溶性产物,色谱分析表明可溶性产物是由未反应的单体、线型及环状低聚物、聚合度在9-10的齐聚物和少量聚合度更高的组分构成的。从称重测量不溶性产物所占比重和可溶性产物的高压液体色谱诸吸收峰峰高的变化,推算出聚合反应过程中单体、主要中间产物的变化趋势。可溶性产物的红外光谱中2920、1665-25、960-930、890,760-730 cm~(-1)吸收峰和'HNMR谱中的5.3, 3.5ppm吸收表明产物具有共轭多烯结构。'HNMR谱在芳核质子区出现7.7ppm吸收峰表明反应初期已有环化现象,这点与本体聚合反应是不同的。不溶性产物除聚合度或交联度高以外,与可溶性产物在结构上也有差异,其芳化程度高很多。从不同反应时间中间产物的红外和'HNMR谱(可溶部分)变化,显示了溶液聚合反应历程十分复杂,同时存在着几种反应。主反应是氯化钯络合物引发的配位络合聚合反应,钯络合物与单体的端乙炔基络合生成活性中心,三键在顺式位打开,生成共轭多烯增长链。链增长过程中伴随着热引起的多烯链顺-反异构化,部分反式多烯分子内环化,继而脱质于芳化生成三取代苯形式的环交联,芳化过程中可发生链的局部断裂。最终产物是共轭多烯链间通过芳环,炔烯桥交联成的体型聚合物。多烯和端乙炔基之间,多烯-多烯之间可发生Diels-Alder反应,因此溶液聚合产物再经短时间热处理,芳化程度增高,玻璃化温度大幅度提高。另外还研究了反应的溶剂效应和增加因含量对反应产率的影响,发现用氯仿和二氯甲烷作溶剂有利于共轭多烯链的顺-反异构化,固含量在2.25-11.25%范围,聚合产率变化不大。本文还对适用于双端炔基聚合反应的催化剂作了广泛的试探,首先考察了若干钯络合物,发现除PdCl_2·2DMSO外,PdCl_2·2MeCN、PdCl_2·2PhCN络合物也可作为双端炔基芳醚砜溶液聚合的催化剂。钴、镍的膦络合物[Co(PPh_3)_2]Cl_2、[Ni(PPh_3)_2]Cl_2可使双端炔基芳醚砜环化生成环状低聚物。极性溶剂四氢呋,二氧六环。氯仿和三氯甲烷可以用作Ziegler-Natta催化剂聚合双端炔基芳醚砜的溶剂。用AlEt_3-Ti(OBu)_4催化得到的聚合物以顺式多烯为主,玻璃化浊度高于250℃,热形变稳定性好。Al/Ti比在6-8时催化活性较高。用稀土体系的Ziegler-Natta催化剂AlEt_3-NdCl_3·2THF、AlEt_3-(CF_3COO)_3Nd也可得到类似的催化效果。制备了以双氰为配位基的高分子-钯络合物,在催化双端炔基单体聚合时具有与类似的低分子钯络合物PdCl_2·2MeCN相近的效果。改变高分子催化剂的N/Pd比未出现明显的活性高峰。这部分工作还有待深入,予期在进一步深入研究之后,该高分子催化剂可用于制备双端乙炔基芒醚砜增强复合材料的连续化浸渍工序,让单体的氯仿溶液流经高分子-钯络合物填充的柱子形成齐聚物后,再浸渍涂层,可缩短成型的热固化时间,具有较大的经济意义。用非等温DSC法测定了双[4-(4-乙炔基苯氧(基)苯基]砜和双[4-(4-乙炔基苯氧基)苯基]酮的本体热聚合及有PdCl_2·2DMSO存在下的催化聚合的反劝力学参数,并与文献报导的(3-乙炔基苯氧基)苯模型物和双[4-(3-乙炔基苯氧基)苯基]砜的本体热聚合反应动力学参数进行比较。经电子计算机最小二乘曲线拟合程序汞得的结果表明表现反就活化能Eap,指数前因子A均与DSC的升温速率和转化率无关。讨论了模型物端乙炔基的位置和链上砜基,羰基的存在对聚合反应的影响,还通过对DSC升温过程中试样的红外光谱跟踪,解释了DSC峰表征的化学反应。
Resumo:
本文试图用Solvay型的Ziegler-Natta催化剂合成PP-EPR,PP-EPR-PP嵌段共聚物,作为乙丙橡胶(EPT)和聚丙烯(PP)的增容剂,来提高聚丙烯的抗冲击强度,并从力学性能、动态力学谱和形态等方面研究增容剂的增容效果。Ziegler-Natta催化剂能否合成乙丙嵌段共聚物是一个有争议的问题。为此,我们利用改进型的Solvay δ-TiCl_3-Et_2AlCl在已烷中加压淤浆聚合丙烯,发现在120分钟之前,聚丙烯的分子量随时间迅速增加,超过120分钟则变缓慢,并趋向于平衡。这说明催化剂活性中心上的活性链最小有120分钟的时间,若在该时间内用聚合过程中换反应单体的办法,有可能合成嵌段共聚物。乙丙嵌段共聚物形成的直接证明是利用(PP-PE)_(50)。通过气相色谱检测发现,抽真空3分钟可以保证换反应气体的纯度,因而用气相聚合可以得到各段纯净的(PP-PE)_(50)多嵌段共聚物,该嵌段的~(13)c-NMR研究表明,在35.68ppm处存在以化学键相连的长乙烯和长丙烯链的特征共振峰。PGC的研究发现,其在热裂解中产生的G碎片比PP/P混物的多,GC-MS的研究表明G碎片由含7个碳的烃组成的混合物,组分之一具有嵌段共聚物的裂解特征。对PP-EPR系列产物和PP-EPR-PP(5-60-20)用扭摆法进和动态力学分析表明,这些嵌段共聚物只在-30℃左右有一个玻璃化转变。而相应的共混物则分别在-50℃和5℃出现两个玻璃化转变,且各T_g不随组成比和共混方法而变化。这是由于嵌段共聚物中各段间化学键的作用,使各段的T_g内移,从而使较靠近的两个T_g合二为一,在动态力学谱上只表现出一个T_g。粘弹谱仪测定的结果基本上同扭摆法的结果。尽管我们尚未准确地测定出乙丙嵌段共聚物中EPR段的分子量,但我们弄清了PP段的立体构型、等规度、分子量、结晶度和EPR段的乙丙比、无规乙丙共聚物的含量、含有长序列乙烯的结晶度等结构因素。用不同段长的PP-EPR作PP/EPT共混物的增容剂,发现降低PP-EPR中PP段的分子量,三元共混物的力学性能明显升高,而增加EPR段的分子量即聚合时间,其无缺口冲击强度先增加而后又降低,说明有一个EPR段最佳长度范围。根据该现象我们提出模型并进行了解释。结晶度的规律与冲击强度的规律相同,对冲击强度提高较大的增容剂,共混物中PP的结晶度降低,但抗张性能却升高,说明增容剂在两相界面起到主价的连接作用。扭摆法和粘弹谱仪测定的动态力学谱表明,增容剂的加入减小了聚丙烯结晶无序化转变,使PP的T_g突出出来。形态的研究说明,PP-EPR还起了“乳化剂”的作用,使EPT在PP连续相中均匀分散,且其微区大小适中。在PP/EPT(85/15)中加入4%的PP-EPR(5-30)嵌段共聚物,室温(20℃)的“冲击屈服强度”与PP/EPT的相同,-20℃的冲击强度为112kg·cm/cm~2,是PP/EPT的1.5倍,-40℃为72kg·cm/cm~2,是PP/EPT的1.9倍,在应力-应变实验中,三元共混物PP/EPT/PP-EPR(5-30)的σ_b*ε_b为2.97*10~5。比相应的PP/EPT(2.27*10~5)有所提高。说明PP-EPR(5-30)对PP/EPT有良好的增容效果,比文献中使用的PP-EPR(15-55)效果好。用PP-EPR-PP三嵌段共聚物作PP/EPT的增容剂,实验证明比PP-EPR二嵌段共聚物有更好的增容效果。例如,在PP/EPT(85/15)中加入4%的PP-EPR-PP(5-60-20),试样不但在20℃,而且在-20℃均未被冲断;在-20℃的“冲击屈服强度”是PP/EPT冲击强度的1.4倍,PP的9.0倍,-40℃的冲击强度是PP/EPT的2.2倍,PP的8.4倍;且其σ_b*ε_b(2.62*10~5)比PP/EPT(2.60*10~5)的有一定的提高,比PP的(2.45*10~5)也高。对PP/EPT/PP-EPR-PP(5-60-20)三元共混物的试样在-40℃冲断面的形态进行研究表明,加入增容剂的共混物断面凹凸不平,是韧性断裂的特征,且在断裂过程中EPT微区被牵拉出的EPT较多,说明PP和EPT的相界面的作用力较大,增容剂起到了主价键的连接作用。动态力学谱表明,增容剂的加入降低了PP结晶无序化转变。而液氮冷冻的脆断面的形态说明,PP-EPR-PP起到了“乳化剂”的作用,使EPT在PP连续相中大小均匀地分散开。
Resumo:
采用一种新方法将Ziegler-Natta催化剂组分TiCl4和MgCl2负载到蒙脱土(MMT)的层间,制备了TiCl4/MgCl2/MMT插层型催化剂.利用Ziegler-Natta催化剂特有的"形态复制效应",通过乙烯原位聚合制备出了表面具有花瓣状形态的聚乙烯纳米复合材料.这种聚乙烯纳米复合材料的表面与水的接触角达到(152.2±0.8)°,呈现超疏水性质.
Resumo:
在各种聚丙烯催化剂中, 应用最为广泛的是Ziegler-Natta(Z-N)催化体系。而作为Z-N催化剂的重要组分之一,内给电子体是影响催化剂活性和聚合物立构规整性的重要因素,因此Z-N催化剂的发展从另一方面看就是内外给电子体的发展,调整催化剂中内给电子体组分的组成和结构是改善钛、镁为主体的Z-N聚丙烯催化剂的催化性能及聚丙烯产品性能的有效手段之一。本文以磷酸三苯酯作为内给电子体, 制备了Ziegler-Natta高效载体催化剂,通过红外光谱确定了磷酸三苯酯在催化剂中与活性中心的络合。聚合结果表明:此催化剂具有较高的聚合活性, 聚合产物聚丙烯具有较高的堆积密度和等规度,并且分子量分布较宽,此研究为制备具有良好加工性能与力学性能的聚丙烯及其共聚产品提供了新的技术支持。
Resumo:
BACKGROUND: How to promote the formation of the gamma-form in a certain propylene-ethylene copolymer (PPR) under atmospheric conditions is significant for theoretical considerations and practical applications. Taking the epitaxial relationship between the alpha-form and gamma-form into account, it is expected that incorporation of some extrinsic alpha-crystals, developed by propylene homopolymer (PPH), can enhance the crystallization of the gamma-form of the PPR component in PPR/PPH blends.RESULTS: The PPH component in the blends first crystallizes from the melt, and its melting point and crystal growth rate decrease with increasing PPR fraction. On the other hand, first-formed alpha-crystals of the PPH component can induce the lateral growth of PPR chains on themselves, indicated by sheaf-like crystal morphology and positive birefringence, which is in turn responsible for enhanced crystallization of the gamma-form of the PPR component.
Resumo:
研究了光敏剂钴化合物存在时茂金属催化剂和Ziegler Natta催化剂生产的线形低密度聚乙烯 (m PE LLD和PE LLD)的热降解行为 ,测定了降解后产品的熔体流动速率、红外光谱和氧化诱导温度。结果表明 :光敏剂使得加工过程中的降解反应增强 ,氧化诱导温度降低 ,氧化曲线形状发生改变 ;与PE LLD相比 ,光敏剂对增强m PE LLD的降解反应和降低加工后样品的热稳定性的作用更强。
Resumo:
Two commercial biaxially oriented polypropylene (BOPP) resins, resin A and resin B, having different processing properties, were fractionated by preparative temperature-rising elution fractionation (TREF). The TREF fractions were further characterized by gel permeation chromatography (GPC), gel permeation chromatography coupled with light scattering (GPC-LS), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). GPC-LS did not find visible long-chain branching in either resin A or B. The results from TREF and DSC indicate that the fractional melting parameter f(T) may be used to predict the profile of the TREF cumulative weight distribution curve. GPC results show that the molecular weights of the fractions tend to increase with elution temperature. WAXD and DSC data show that the crystallinity of fractions does not increase monotonically with increase of elution temperature. There appears to be a maximum in the plot of crystallinity versus elution temperature. The high-speed BOPP resin A has a lower isotacticity but a homogeneous isotacticity distribution and a higher molecular weight but a broader molecular weight distribution than resin B.
Resumo:
烯烃在催化剂的作用下形成聚合物 .改变催化剂的结构 ,可以得到特定分子结构和特定性能的聚烯烃产物 ,因而催化剂的研究开发是聚烯烃升级换代的核心 .烯烃聚合催化剂的发展大致经历了 3个阶段 :Ziegler- Natta催化剂 -茂金属催化剂 -后过渡金属催化剂 .Ziegler[1]和 Natta[2 ]发现了用于各种 α-烯烃聚合的催化剂 ,并已作为主导技术应用于工业化大生产 . 2 0世纪 80年代初 ,Kaminsky等 [3~ 5] 发现 ,二氯二茂锆与烷基铝氧烷组成的体系(茂金属催化剂 )是一种高催化活性、高立体选择性、长寿命的催化剂 .茂金属催化剂的设计、合成和应用 ,促进了聚烯烃化学的革命 ,目前对于茂金属用于烯烃聚合 ,正从基础研究向实用化、工业化阶段发展 .后过渡金属催化剂是指后过渡金属镍、钯、铁、钴等的配位化合物 .由于后过渡金属有较强的β- H消除倾向 ,因而大多数后过渡金属催化剂只适用于烯烃二聚或齐聚 ,得不到高分子量的烯烃聚合物 [6~ 8] .人们曾尝试用后过渡金属催化烯烃聚合 ,但没有表现出如 和 族体系那样高的活性 ,它们主要用于烯烃的齐聚和双烯烃的聚合反应 ,最近几年来这...
Resumo:
The theory of chemical shift effect of substituent was applied to the assignment of the C-13 NMR spectra of the ethylene/propylene and ethylene/octene-1 copolymers. Using the parameters derived above and the DEFT technique, we then entirely assigned the C-13 NMR spectra of the ethylene/propylene/octene(-1) terpolymers synthesized in the presence of the same heterogeneous supported Ziegler-Natta catalyst, TiCl4/MgCl2/i-Bu3Al. The present paper also covers the terpolymer composition and the monomer sequence distributions of a series of ethylene/propylene/octene-1 terpolymers.
Resumo:
Crystallization behavior of the single-site catalysed ethylene-octene-1 copolymer (LLDPE) has been investigated. The results indicate that the distribution of branches in the novel LLDPE is more homogeneous and regular than that in materials prepared with Ziegler-Natta catalysts. However, there is still some variability in inter-branch separation. The work has confirmed that branches trend to be excluded from crystals formed by branched polyethylene, but it is dependent on branch distribution and crystallization dynamics.