60 resultados para Water in a agriculture
Resumo:
Copepod species diversity, abundance and assemblages in relation to water masses over the continental shelf of the Yellow Sea (YS) and East China Sea (ECS) were studied extensively based on the net plankton samples in autumn 2000. Multivariate analysis based on copepod assemblage resulted in recognition of five groups (Groups 1-5) corresponding to the water masses. Groups 1 and 2 delineated from inshore stations with low salinity YS Surface Water, and offshore stations with YS Cold Water in the YS. Group 3 located in the joint area of YS and ECS mainly with Mixed Water. Groups 4 and 5 in the ECS delineated two assemblages mainly from inshore and shallow stations with ECS Mixed Water in the southeastern ECS, and offshore stations along the ECS shelf edge controlled by saline Kuroshio Water. Salinity and temperature were more important in characterizing copepod assemblage of the continental shelf than chlorophyll a. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This article is the result of experimental studies of the rheologv, viscosities, surface tensions, and atomization of water-methanol and diesel emulsions. The Span 80 and Tween 60 are employed to make three emulsifying agents, Y01, Y02, and Y03, with viscosity of 1.32-1.5 Pa s and HLB values of 5.36, 4.83, and 4.51, respectively. In the water-in-oil emulsions, the aqueous phase is between 10% and 50%; the agent concentration added is 0.8-8.0%. The viscosity of the emulsions is 0.003-0.02 Pa s, and the surface tens ion is 0.04-0.1 N/m. The types and concentrations of agents significantly influence the viscosity of the emulsions, and the higher concentration of the aqueous phase (<50%) in creases the viscosities of the emulsions, especially for higher agent concentration. Interfacial membrane and HLB values of the agents can explain all these phenomena. Higher aqueous phase concentration and agent viscosity results in larger Sauter mean diameter.
Resumo:
The interactions between poly(vinylpyrrolidone) (PVP) and the reversed micelles composed of water, AOT, and n-heptane are investigated with the aid of phase diagram, measurements of conductivity and viscosity, Fourier transform infrared (FTIR) spectrum, and dynamic light scattering (DLS). The phase diagrams of water/AOT/heptane in the presence of and absence of PVP are given. The conductivity of the water/AOT/heptane reversed micelle without PVP initially increases and then decreases with the increase of water content, ω0 (the molar ratio of water to AOT), while the plots of conductivity (K) versus ω0 of the reversed micelle in the presence of PVP depend on the PVP concentrations. The plot of K versus ω0 with 2.0%wt PVP is similar to that without PVP. Only the ω0,max (the water content that the maximum conductivity corresponds to) is larger than that without PVP. Nevertheless, the conductivity of the reversed micelle containing more than 4%wt PVP always rises with the increase of the water content in the measured range. The DLS results indicate that the hydrodynamic radius (Rh) in the presence and absence of PVP rises with the increase of ω0. The plots with PVP and without PVP have almost the same value when ω0<17; and after that, it quickly increases with the increase of ω0. It is interesting to find that there is almost no effect of the PVP concentration on the viscosity and Rh of the reversed micelle at ω0 = 15. The FTIR results suggest that the contents of SO3--bound water and Na+-bound water both decrease with PVP added, while the content of the bulky-like water increases. However, the trapped water in the hydrophobic chain of the surfactant is nearly unaffected by PVP. It is also found from the FTIR that the carbonyl group stretching vibration of AOT is fitted into two sub-peaks, which center at 1740 and 1729 cm-1, corresponding to the trans and cis conformations of AOT, respectively.
The effect of organic matter accumulation on phosphorus release in sediment of Chinese shallow lakes
Resumo:
The effects of organic matter in sediment on phosphorus release were studied by field investigations in eight Chinese shallow freshwater lakes with different trophic status and a laboratory experiment. The sediment organic matter content paralleled the trophic status, ranging from 6.1 to 173.0 g kg(-1) (dry weight), with the mean value of 63.1 g kg(-1) (dry weight). It was positively proportional to Soluble reactive phosphorus concentration in the interstitial water in a form of exponential function, but inversely related to the sediment Fe/P ratio. The sediment alkaline phosphatase activity was significantly related not only to the organic matter content (r = 0.829, P < 0.01, n = 120), but also to the soluble reactive phosphorus concentration in interstitial water (r = 0.454, P < 0.01, n = 42). In the laboratory experiment, the addition of organic matter (dry materials of an aquatic macrophyte) into the sediment significantly enhanced alkaline phosphatase activity and soluble reactive phosphorus release. However, in the treatment with organic matter added and aeration, this release was generally prevented in spite of an increase in APA. Hence, sediment organic matter can effectively accelerate phosphorus release by enzymatic hydrolysis and anaerobic desorption. The latter mechanism seems to be more important.
Resumo:
Nutrient-rich effluents caused rising concern due to eutrophication of aquatic environment by utilization of a large amount of formula feed. Nutrient removal and water quality were investigated by planting aquatic vegetable on artificial beds in 36-m(2) concrete fishponds. After treatment of 120 days, 30.6% of total nitrogen (TN) and 18.2% of total phosphorus (TP) were removed from the total input nutrients by 6-m(2) aquatic vegetable Ipomoea aquatica. The concentrations of TN, TP, chemical oxygen demand (COD) and chlorophyll a in planted ponds were significantly lower than those in non-planted ponds (P<0.05). Transparency of water in planted ponds was much higher than that of control ponds. No significant differences in the concentration of total ammonia nitrogen (TAN), nitrate nitrogen (NO3-N) and nitrite nitrogen (NO2--N) were found between planted and non-planted ponds. These results suggested that planting aquatic vegetable with one-sixth covered area of the fishponds could efficiently remove nutrient and improve water quality.
Resumo:
We evaluated the feasibility of microencapsulating dissolved alkaline phosphatase of a water body into reverse micelle systems prepared by hexadecyltrimethylammonium bromide as a surfactant in cyclohexane and 1-butanol as co-surfactant. The dissolved alkaline phosphatase activity within the micelle was described, including its kinetic parameters and the effects of pH and temperature on catalytic activity in surface, overlying and interstitial water of Lake Donghu. We found the similarities on the behavior of dissolved alkaline phosphatase of surface and interstitial water in reverse micelles, which was distinctly different from its behavior in the overlying water. This difference likely reflected the different origins of the dissolved alkaline phosphatase in the vertical profile of the lake. This system provides a novel tool with which to study the diversity and ecological significance of extracellular enzymes in aquatic environments.
Resumo:
Monthly sediment and interstitial water samples were collected in a shallow Chinese freshwater lake (Lake Donghu) from three areas to determine if alkaline phosphatase activity (APA) plays an important role in phosphorus cycling in sediment. The seasonal variability in the kinetics of APA and other relevant parameters were investigated from 1995-1996. The phosphatase hydrolyzable phosphorus (PHP) fluctuated seasonally in interstitial water, peaking in the spring. A synchronous pattern was observed in chlorophyll a contents in surface water in general. The orthophosphate (o-P) concentrations in the interstitial water increased during the spring. An expected negative relationship between PHP and V-max of APA is not evident in interstitial water. The most striking feature of the two variables is their co-occurring, which can be explained in terms of an induction mechanism. It is argued that phosphatase activity mainly contributes to the driving force of o-P regeneration from PHP in interstitial water, supporting the development of phytoplankton biomass in spring. The V-max values in sediment increased during the summer, in Conjunction with lower K-m values in interstitial water that suggest a higher affinity for the substrate. The accumulation of organic matter in the sediment could be traced back to the breakdown of the algal spring bloom, which may stimulate APA with higher kinetic efficiency, by a combination of the higher V-max in sediments plus lower K-m values in interstitial water, in Summer. In summary, a focus On phosphatase and its substrate in annual scale may provide a useful framework for the development of novel P cycling, possible explanations for the absence of a clear relationship between PHP and APA were PHP released from the sediment which induced APA, and the presence of kinetically higher APA both in sediment and interstitial water which permitted summer mineralization of organic matter derived from the spring bloom to occur. The study highlighted the need for distinguishing functionally distinct extracellular enzymes between the sediment and interstitial water of lakes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper describes the long-term dynamics of phosphorus concentrations in both the lake water and the sediment in a subtropical Chinese lake, Lake Donghu. The total phosphorus (TP) concentration in the lake water experienced an upward trend from the 1950s, and peaked in 1983/1984, but declined obviously afterwards. From the 1950s to the 1990s, TP content in the upper 10 cm sediment of the lake increased steadily from 0.307 to 1.68 mg Pg DW-1 at Station I and from 0.151 to 0.89 mg Pg DW-1 at Station II, respectively. The TP increase in the lake water before mid-1980s was mainly attributed to the massive input of sewage P. The outbreak of cyanobacterial blooms coincided with the peaks of TP and Orthophosphate (PO4-P) in the water in mid-1980s, and the maximum TP of the water reached as high as 1.349 mg/1 at Station I and 0.757 mg/l at Station II (in 1984), respectively. The declines of TP and PO4-P in the water after mid-1980s was coincident with the disappearance of cyanobacterial bloom. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The sediment of Ya-Er Lake had been heavily polluted by polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from the former chloralkali industry. The total amounts of PCDD/Fs and I-TEQ decreased along the water flow direction and also decreased from top to bottom layers of sediment cores. Sediment of Pond 1 was dominated by PCDF, especially TCDF. In contrast, in the other four ponds, PCDD dominated in all layers and octachlorinated dibenzo-p-dioxin (OCDD) predominated in all of the homologues. When homologue profiles from sediments and water samples were compared using principal component analysis (PCA), the first two principal components represented 95.2% of the variance in the data. The first component explained 75.9% of the variance and the second one 19.3%. Two clusters were most distinct, presenting a shift in PCDD/Fs composition from PCDF to heptachlorinated dibenzo-p-dioxin (HpCDD) and OCDD in sediments and water from Pond I to Ponds 2-5. The pattern variation between Pond 1 and Ponds 2-5 in Ya-Er Lake was most likely due to the change of process in the chemical plant after the dams between the ponds were built. The results of the present study also showed that log K-oc of PCDD/Fs calculated from data of sediment and water in the field were comparable with theoretical log K-oc. The results also implied that the concentrations of PCDD/Fs in water and sediments could be predicted from each other by log K-oc. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Condensation of steam in a single microchannel, silicon test section was investigated visually at low flow rates. The microchannel was rectangular in cross-section with a depth of 30 pm, a width of 800 mu m and a length of 5.0 mm, covered with a Pyrex glass to allow for visualization of the bubble formation process. By varying the cooling rate during condensation of the saturated water vapor, it was possible to control the shape, size and frequency of the bubbles formed. At low cooling rates using only natural air convection from the ambient environment, the flow pattern in the microchannel consisted of a nearly stable elongated bubble attached upstream (near the inlet) that pinched off into a train of elliptical bubbles downstream of the elongated bubble. It was observed that these elliptical bubbles were emitted periodically from the tip of the elongated bubble at a high frequency, with smaller size than the channel width. The shape of the emitted bubbles underwent modifications shortly after their generation until finally becoming a stable vertical ellipse, maintaining its shape and size as it flowed downstream at a constant speed. These periodically emitted elliptical bubbles thus formed an ordered bubble sequence (train). At higher cooling rates using chilled water in a copper heat sink attached to the test section, the bubble formation frequency increased significantly while the bubble size decreased, all the while forming a perfect bubble train flowing downstream of the microchannel. The emitted bubbles in this case immediately formed into a circular shape without any further modification after their separation from the elongated bubble upstream. The present study suggests that a method for controlling the size and generation frequency of microbubbles could be so developed, which may be of interest for microfluidic applications. The breakup of the elongated bubble is caused by the large Weber number at the tip of the elongated bubble induced by the maximum vapor velocity at the centerline of the microchannel inside the elongated bubble and the smaller surface tension force of water at the tip of the elongated bubble.
Resumo:
黄土高原半干旱地区在中国旱作农业生产中占有重要地位。干旱缺水与水土流失并存是制约该区域经济发展的两大瓶颈因素。水保农业和径流农业两种旱作农业生产方式已趋于成熟,但对天然降水调控利用能力低下,难于实现农业生产的优质高产高效。集雨补灌生态农业是在继承水保农业和径流农业成功技术基础上,对降雨调控利用方式的进一步发展,它能在时间和空间两个方面实现降雨径流的富集叠加,能充分发挥环境资源与水肥光热因子的协同增效作用,大幅度提高农业生产力,实现同步缓解干旱缺水与水土流失双重目标。集雨补灌是黄土高原半干旱区农业可持续发展的一种综合模式和战略性措施,对黄土高原半干旱区生态型现代农业发展具有重要推动作用。
Resumo:
在人类活动导致全球变暖的前提下,由于全球气温的升高,地表水分加速向空中蒸发。从20世纪70年代至今,地球上严重干旱地区的面积几乎扩大了一倍。这一增长的一半可归因于气温升高而不是降雨量下降,因为实际上同期全球平均降水量还略有增长。干旱对陆地植物和农林生态系统产生深远影响,并已成为全球变化研究的一个重要方面。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地、人工林下和林窗环境作为目前该区人工造林和森林更新的重要生境,其截然不同的光环境对亚高山针叶林更新和森林动态有非常重要的影响。凋落物产生的化感物质可通过影响种子萌发和早期幼苗的定居而影响种群的建立和更新,而人工林和自然林物种以及更新速度的差异性也都受凋落物的影响。 云杉是川西亚高山针叶林群落的重要树种之一,在维持亚高山森林的景观格局和区域生态安全方面具有十分重要的作用,其自然更新能力及其影响机制一直是研究的热点问题。本试验以云杉种子和2年生幼苗为研究对象,从萌发、根尖形态、幼苗生长、光合作用、渗透调节和抗氧化能力等方面研究了不同光环境下水分亏缺和凋落物水浸液对云杉种子和幼苗生长的影响。旨在从更新的角度探讨亚高山针叶林自然更新的过程,其研究成果可在一定程度上为川西亚高山针叶林更新提供科学依据,同时也可为林业生产管理提供科学指导。主要研究结论如下: 水分亏缺在生长形态、光合作用、抗氧化能力、活性氧化对云杉幼苗都有显著影响。总体表现为,水分亏缺导致了云杉幼苗的高度、地径、单株总生物量降低,增加了地下部分的生长;水分亏缺显著降低了云杉叶片中相对含水量、光合色素、叶氮含量,净光合速率和最大量子产量(Fv/Fm),提高了幼苗叶片中膜脂过氧化产物(MDA)的含量;水分亏缺提高了幼苗叶片中过氧化氢(H2O2)含量,超氧荫离子(O2-)生成速率以及脯氨酸和抗氧化系统的活性(ASA, SOD, CAT, POD, APX和GR)。从这些结果可知,植物在遭受水分亏缺导致的伤害时,其自身会形成防御策略,并通过改变形态和生理方面的特性以减轻害。但是,这种自我保护机制依然不能抵抗严重水分亏缺对植物的伤害。 模拟林下低光照条件显著增加单株植物的地上部分生长,尤其是其叶片的比叶面积(叶面积/叶干重),同时其光合色素含量和叶片相对含水量也显著增加,这些改变直接导致植株光合速率和生物量的增加。同时,与高光照水平相比,低光照幼苗的膜脂过氧化产物(MDA)和活性氧物质均较低,显示出低光照比高光照水平对植物的更低的氧化伤害。尽管低光照也导致大部分抗氧化酶活性降低,但这正显示出植物遭受低的氧化伤害,更印证了前面的结论。 凋落物水浸液影响了云杉种子的萌发和根系的生长,更在形态、光合作用、抗氧化能力、活性氧物质以及叶氮水平上显著影响了云杉幼苗,其中,以人工纯林凋落物的影响更有强烈。具体表现在,种子萌发速率和萌发种子幼根的长度表现为对照>自然林处理>人工纯林;凋落物水浸液抑制种子分生区和伸长区的生长,人工林处理更降低了根毛区的生长,使根吸水分和养分困难。对2年生幼苗的影响主要表现在叶绿素含量、光合速率以及叶氮含量的降低;膜脂过氧化产物、活性氧物质和抗氧化酶系统的显著增加。同样的,人工纯林处理对云杉幼苗的影响显著于自然林处理。 在自然生态系统中,由于全球变暖气温升高导致的水分亏缺和森林凋落物都存在森林的砍伐迹地,林窗和林下环境中。我们的研究表明,与迹地或林窗强光照比较,林下的低光照环境由于为植物的生长营造了较为湿润的微环境,因此水分亏缺在林下对云杉幼苗造成的影响微弱。这可以从植物的形态、光合速率以及生物量积累,过氧化伤害和抗氧化酶系统表现出来。另一方面,凋落物水浸液在模拟林下低光照环境对植物的伤害也微弱于强光照环境,这与强光照环境高的水分散失导致环境水分亏缺有关;而人工纯林处理对云杉幼苗的伤害比对照和自然林处理显示出强烈的抑制作用。 Under the pre-condition of global warming resulted from intensive human activities, water in the earth’s surface rapidly evaporates due to the increase of global air temperature. From 1970s up to now, the area of serious drought in the world is almost twice as ever. This increase might be due to the increasing air temperature and not decreasing rainfall because global average rainfall in the corresponding period slightly is incremental. Drought will have profound impacts on terrestrial and agriculture-forest system and has also become the important issue of global change research. The subalpine coniferous forests in the eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying the effects of global warming on terrestrial ecosystems. The light environment significantly differs among cutting blanks, forest gap and understory, which is particularly important for plant regeneration and forest dynamics in the subalpine coniferous forests. Picea asperata is one of the keystone species of subalpine coniferouis forests in western China, and it is very important in preserving landscape structure and regional ecological security of subalpine forests. The natural regeneration capacities and influence mechanism of Picea asperata are always the hot topics. In the present study, the short-term effects of two light levels (100% of full sunlight and 15% of full sunlight), two watering regimes (100% of field capacity and 30% of field capacity), two litter aqueous extracts (primitive forest and plantation aqueous extracts) on the seed germination, early growth and physiological traits of Picea asperata were determined in the laboratory and natural greenhouse. The present study was undertaken so as to give a better understanding of the regeneration progress affected by water deficit, low light and litter aqueous extracts. Our results could provide insights into the effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientific direction for the forest production and management. Water deficit had significant effects on growth, morphological, physiological and biochemical traits of Picea asperata seedlings. Water deficit resulted in the decrease in height, basal diameter, total biomass and increase in under-ground development; water deficit significantly reduced the needle relative water content, photosynthetic pigments, needle nitrogen concentration, net photosynthetic rate and the maximum potential quantum yield of photosynthesis (Fv/Fm), and increased the degree of lipid peroxidation (MDA) in Picea asperata seedlings; water deficit also increased the rate of superoxide radical (O2-) production, hydrogen peroxide (H2O2) content, free proline content and the activities of antioxidant systems (ASA, SOD, POD, CAT, APX and GR) in Picea asperata seedlings. These results indicated that some protective mechanism was formed when plants suffered from drought stress, but the protection could not counteract the harm resulting from the serious drought stress on them. Low light in the understory significantly increased seedling above-ground development, especially the species leaf area (SLA), and photosynthetic pigments and relative needle content. These changes resulted in the increase in net photosynthetic rate and total biomass. Moreover, the lower MDA content and active oxygen species (AOS) (H2O2 and O2-) in low light seedlings suggested that low light had weaker oxidative damage as compared to high light. Lower antioxidant enzymes activities in low light seedlings indicated the weaker oxidative damage on Picea asperata seedlings than high light seedlings, which was correlative with the changes in MDA and AOS. Litter aqueous extracts affected seed germination and root system of Picea asperata seedlings. Significant changes in growth, photosynthesis, antioxidant activities, active oxygen species and leaf nitrogen concentration were also found in Picea asperata seedlings, and plantation treatment showed the stronger effects on these traits than those in control and primitive forest treatment. The present results indicated that seed germination and radicle length parameters in control were superior to those in primitive forest treatment, and those of primitive forest treatment were superior to plantation treatment; litter aqueous extracts inhibited the meristematic and elongation zone, and plantation treatment caused a decrease in root hairs so as to be difficult in absorbing water and nutrient in root system. On the other hand, litter aqueous extracts significantly decreased chlorophyll content, net photosynthetic rate and leaf nitrogen concentration of Picea asperata seedlings; MDA, AOS and antioxidant system activities were significantly increased in Picea asperata seedlings. Similarly, plantation treatment had more significant effect on Picea asperata seedlings as compared to primitive forest treatment. In the nature ecosystem, water deficit resulted from elevating air temperature and litter aqueous extract may probably coexist in the cutting blank, forest gap and understory. Our present study showed that water deficit had weaker effects on low light seedlings in the understory as compared to high light seedlings in the cutting blank and forest gap. The fact was confirmed from seedlings growth, gas exchange and biomass accumulation, peroxidation and antioxidant systems. This might be due to that low light-reduced leaf and air temperatures, vapour-pressure deficit, and the oxidative stresses can aggravate the impact of drought under higher light. On the other hand, litter aqueous extracts in the low light had weaker effects on the Picea asperata seedlings than those at high light level, which might be correlative to the water evapotranspiration under high light. Moreover, plantation litter aqueous extracts showed stronger inhibition for seed germination and seedling growth than control and primitive forest treatments.
Resumo:
Intense heavy ion beams offer a unique tool for generating samples of high energy density matter with extreme conditions of density and pressure that are believed to exist in the interiors of giant planets. An international accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is being constructed at Darmstadt, which will be completed around the year 2015. It is expected that this accelerator facility will deliver a bunched uranium beam with an intensity of 5x10(11) ions per spill with a bunch length of 50-100 ns. An experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed to achieve a low-entropy compression of a sample material like hydrogen or water (which are believed to be abundant in giant planets) that is imploded in a multi-layered target by the ion beam. Detailed numerical simulations have shown that using parameters of the heavy ion beam that will be available at FAIR, one can generate physical conditions that have been predicted to exist in the interior of giant planets. In the present paper, we report simulations of compression of water that show that one can generate a plasma phase as well as a superionic phase of water in the LAPLAS experiments.
Resumo:
The hydrodehalogenation of aromatic halides, catalyzed by Pd/C in aqueous solutions, yields arenes in short reaction times at room temperature under normal pressure. The nature of the solvents has an important influence on the reaction rates and the activity of the catalyst. The catalyst shows the highest activity in water. In the hydrodechlorination of 4-chlorohypnone, it was in water that C-Cl bond was easier to be hydrogenated, and in isopropanol that C=O was easier to be hydrogenated. (C) 2004 Elsevier B.V. All rights reserved.