87 resultados para WATER NITROBENZENE INTERFACE
Resumo:
The field observation of this study was carried out in the Changjiang Estuary from May 19 to 26,2003, just a few days before the Three Gorges Dam began to store water. A total of 29 stations, including 2 anchor stations, were distributed through almost the whole salinity gradient Based on the data gained from these stations, the biogeochemical characteristics of dissolved oxygen (DO) were examined. Spatial distribution of DO concentrations showed the pattern that it increased in a downriver direction. DO concentration generally varied within a narrow range of 733-8.10 mg l(-1) in the freshwater region and the west part of the mixed water region, and after that it increased rapidly. In vertical direction, the differences in DO concentrations between surface and 2 m above the bottom were big at the stations with water depths exceeding 20 m; DO concentration up to 14.88 mg l(-1) was recorded at the sea surface, while at 2 m above the bottom its concentration was only about 4 mg l(-1). The fluctuation in DO concentrations was small during a period of 48 h in the mixed water region and 2 m above the bottom of the seawater region; while it was large during the same period in the seawater region for surface and 5 m below the surface layer, and a maximum variation from 8.77 to 12.66 mg l(-1) in 4 h was recorded. Oxygen fluxes also showed a marked spatio-temporal variation. As a whole, the freshwater region and mixed water region were an oxygen sink while the seawater region was a source. Relationships between dissolved oxygen and some biogeochemical parameters which could markedly influence its spatio-temporal distribution were discussed in this paper. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Lidocaine transfer across the water/1,2-dichloroethane and the water/nitrobenzene interfaces has been investigated by chronopotentiometry with linear current scanning and cyclic voltammetry. The irreversible hydrolysis occurring in the phase transfer of dicaine at the water/nitrobenzene interface is discussed.
Resumo:
The Research on Electroanalytical chemistry in China started mainly from the beginning of new China in 1949. It has already good basis and development nowadays. A review with references to the end of seventies has been published in "Reviews in Analytical Chemistry" 1) and in a book titled "Fifty years of Chinese Chemistry" edited by the Chinese Chemical Society in 1985 2). Since then more than thousand papers have been published, and it is impossible and also not necessary to describe all of them. This review only deals with the main progress of electroanalytical chemistry in China in recent years. Some new developed methodologies will be reviewed by S. Dong in the next article.
Resumo:
A novel method to study electron-transfer (ET) reactions between ferrocene in 1,2-dichloroethane (DCE) and a redox couple of K3Fe(CN)(6) and K4Fe(CN)(6) in water using scanning electrochemical microscopy (SECM) with a three-electrode setup is reported. In this work, a water droplet that adheres to the Surface of a platinum disk electrode is immersed in a DCE solution. The aqueous redox couple serves both as a reference electrode on the platinum disk and as an electron donor/acceptor at the polarized liquid/liquid inter-face. With the present experimental approach, the liquid/liquid interface can be polarized externally, while the electron-transfer reactions between the two phases can be monitored independently by SECM. The apparent heterogeneous rate constants for the ET reactions were obtained by fitting the experimental approach curves to the theoretical values. These rate constants obey the Butler-Volmer theory i.e., them, are found to be potential dependent.
Resumo:
Sodium ion transfer across micro-water/1,2-dichloroethane (DCE) interface facilitated by a novel ionophore, terminal-vinyl liquid crystal crown ether (LCCE) was studied by cyclic voltammetry. LCCEs have potential applications because of their physicochemical properties and the utilization of crown ethers as selective ionophoric units in other functionalized compounds are interesting. Host-guest-type behavior for such compounds in the liquid-crystalline state is studied. The experimental results suggest that the transfer of the sodium ion facilitated by LCCE was controlled by diffusion of LCCE from bulk solution of DCE to the interface. The diffusion coefficient of LCCE in DCE was calculated to be equal to (3.62 +/- 0.20) x 10(-6) cm(2)/s. Steady-state voltammograms are due to sodium ion transfer facilitated by the formation of 1: 1 metal (M)-LCCE complex at the interface and the mechanism tends to be transfer by interfacial complexation or dissociation (TIC or TID). The stability constant of the complex formed was determined to be log beta(o) = 5.5 in DCE phase. The influence of parameters such as concentration of sodium ion and concentration of LCCE on the sodium ion transfer was investigated.
Resumo:
Facilitated proton transfer across the water/1,2-dichloroethane (DCE) interface supported on the tips of micro- and nano-pipets by o-phenanthroline (Phen) was studied by using cyclic voltammetry. The formed micro- and nano-liquid/liquid interfaces functioned as micro- and nano-electrodes under certain experimental conditions. The dependence of the half-wave potentials on the aqueous solutions acidities was studied and the ratio of association constants between Phen and proton in the aqueous and DCE phases was calculated by the method proposed by Matsuda et al.. The standard rate constant (k(0)) and the transfer coefficient (alpha) evaluated by using nano-pipets were equal to 0.183 +/- 0.054 cm/s and 0.70 +/- 0.09, respectively.
Resumo:
In this paper, we describe a simple procedure to make agar-gel microelectrodes by filling micropipettes. These microelectrodes were used to study K+ transfer across the agar-water \ 1,2-dichloroethane interface facilitated by dibenzo-18-crown-6 (DB18C6), and the transfer of tetraethylammonium (TEA(+)). The results observed were similar to those obtained at micro-liquid \ liquid interfaces. The effect of various amounts of agar in the aqueous phase was optimized and 3% agar was chosen based on the potential window and solidification time. The different shapes of micro-agar-gel electrodes were prepared in a similar way. The fabricated agar-gel microelectrodes obey the classical micro-disk steady-state current equation, which is different from the behavior of a normal micropipette filled with aqueous solution without silanization. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The transfer of sodium cation facilitated by (anthraquinone-1-yloxy) methane-15-crown-5(L) has been investigated at the water/1,2-dichloroethane microinterface supported at the tip of a micropipette. The diffusion coefficient of (anthraquinone-1-yloxy) methane-15-crown-5 obtained was (3.42 +/- 0.20) x 10(-6) cm(2) s(-1). The steady-state voltammograms were observed for forward and backward scans due to sodium ion transfer facilitated by L with 1:1 stoichiometry. The mechanism corresponded to an interfacial complexation (TIC) and interfacial dissociation (TID) process. The association constant was calculated to be log beta(o) = 11.08 +/- 0.03 in the DCE phase. The association constant of other alkali metals (Li+, K+, Rb+) were also obtained.
Resumo:
The transfer of sodium and potassium ions facilitated by dibenzo-15-crown-5 (DB15C5) has been studied at the micro-water/1,2-dichloroethane (water/DCE) interface supported at the tip of a micropipette. Cyclic volt-ammetric measurements were performed in two limiting conditions: the bulk concentration of Na+ or K+ in the aqueous phase is much higher than that of DB15C5 in the organic phase (DB15C5 diffusion controlled process) and the reverse condition (metal ion diffusion controlled process). The mechanisms of the facilitated Na+ transfer by DB15C5 are both transfer by interfacial complexation (TIC) with 1 : 1 stoichiometry under these two conditions, and the corresponding association constants were determined at log beta(1) = 8.97 +/- 0.05 or log beta(1) = 8.63 +/- 0.03. However, the transfers of K+ facilitated by DB15C5 show different behavior. In the former case it is a TIC process and its stoichiometry is 1 : 2, whereas in the latter case two peaks during the forward scan were observed, the first of which was confirmed as the formation of K (DB15C5)(2) at the interface by a TIC mechanism, while the second one may be another TIC process with 1 : 1 stoichiometry in the more positive potential. The relevant association constants calculated for the complexed ion, K+(DB15C5)(2), in the organic phase in two cases, logbeta(2), are 13.64 +/- 0.03 and 11.34 +/- 0.24, respectively.
Resumo:
The H+, Li+, Na+, K+, Mg2+, Ca2+ and Ba2+ ion transfer across the water/nitrobenzene (NB) and water/1,2-dichloroethane (DCE) interfaces, facilitated by the ionophore ETH157, has been investigated by cyclic voltammetry (CV). The mechanism of the transfer process has been discussed, and the diffusion coefficients and the stability constants of the complexes formed in the nitrobenzene phase have been determined.
Resumo:
The transfer behavior of alkali motal ions K~+ and Na~+ across the interfaces of water/nitrobenzene and water/1, 2-dichloroethane facilitated by Triton X-100 is investigated by cyclic voltammetry with four electrodes. The equations of interfacial half-wave potential derived in terms of the mechanism proposed isverified by the experimental data and consistent with the practical △_0~wφ_p-pM curves.
Resumo:
Both the behavior and the general key factors for assembling flexible SWNT films at the water/oil interface were investigated; the electron transfer, one of the most fundamental chemical processes, at the SWNT-sandwiched water/oil interface was also firstly illustrated using scanning electrochemical microscopy.
Resumo:
The use of chemically modified electrodes (CMEs) for liquid chromatography and flow-injection analysis is reviewed. Electrochemical detection with CMEs based on electrocatalysis, permselectivity, ion flow in redox films, and ion transfer across the water-solidified nitrobenzene interface is discussed in terms of improving the stability, selectivity, and scope of electrochemical detectors, and the detection of electroinactive substances. More than 90 references are included.
Resumo:
Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO2 and CH4 causing a net release of CO2 and CH4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic take, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 1, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO2 and CH4) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The large-scale synthesis of the metal-organic framework Eu(1,3,5-BTC)center dot 6H(2)O nanocrystallites with delicate morphologies such as sheaflike, butterflylike, and flowerlike superstructures composed of nanowires have been realized via a simple solution phase method at room temperature. Time-dependent experiments indicate that these superstructures were constructed by the splitting crystal growth mechanism, as has been noted in some minerals in nature. The synthetic parameters such as reaction time, concentration and molar ratio of reactants, surfactant, and reaction temperature all affected the morphology of the Eu(1,3,5-BTC)center dot 6H(2)O architectures. These well-arranged architectures exhibit red emission corresponding to the D-5(0) -> F-7(2) transition of the Eu3+ ions under UV light excitation, and the lifetime is determined to be about 0.22 ms.