64 resultados para Veii, Conquest of, 396 B.C.
Resumo:
The aim of this study was to estimate the acute effects of low dose C-12(6+) ions or X-ray radiation on human immune function. The human peripheral blood lymphocytes (HPBL) of seven healthy donors were exposed to 0.05 Gy C-12(6+) ions or X-ray radiation and cell responses were measured at 24 h after exposure. The cytotoxic activities of HPBL were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT); the percentages of T and NK cells subsets were detected by flow cytometry; mRNA expression of interleukin (IL)-2, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma were examined by real time quantitative RT-PCR (qRT-PCR); and these cytokines protein levels in supematant of cultured cells were assayed by enzyme-linked immunosorbent assays (ELISA). The results showed that the cytotoxic activity of HPBL, mRNA expression of IL-2, IFN-gamma and TNF-alpha in HPBL and their protein levels in supernatant were significantly increased at 24 h after exposure to 0.05 Gy C-12(6+) ions radiation and the effects were stronger than observed for X-ray exposure. However, there was no significant change in the percentage of T and NK cells subsets of HPBL. These results suggested that 0.05 Gy high linear energy transfer (LET) C-12(6+) radiation was a more effective approach to host immune enhancement than that of low LET X-ray. We conclude that cytokines production might be used as sensitive indicators of acute response to LDL (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The transition of lamellar crystal orientation from flat-on to edge-on in ultrathin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) via solvent vapor (toluene) treatment Was investigated. When the as-prepared film was treated in saturated solvent vapor, breakout crystals could form quickly, and then they transformed from square single crystals (flat-on lamellae) to dendrites and finally to nanowire crystals (edge-on lamellae). Initially, heterogeneous nucleation tit the polymer/substrate interface dominated the structure evolution, leading to flat-on lamellar crystals orientation. And the transition from faceted habits to dendrites indicated a transition of underlying mechanism from nucleation-controlled to diffusion-limited growth. As the solvent molecules gradually diffused into the polymer/substrate interface, it will subsequently weaken the polymer-substrate interaction.
Resumo:
A new solid solution system of Al in WC, with the stoichiometry of (W1-xAlx)C (x = 0.10, 0.25, 0.50, 0.75, 0.86), has been synthesized by a solid-state reaction between W1-xAlx alloys and carbon at around 1673 K in vacuum. Environment scanning electron microscope, energy- dispersive analysis of X-ray, X-ray photoelectron spectroscopy, and inductively coupled plasma analyses are used to certify the formation of the products. The mechanism of the solid-state reaction is also discussed. (W1-xAlx)C is identified to crystallize in the hexagonal space group P6m2 (No. 187) and belongs to the WC structure type. The atoms of W and Al occupy the same lattice site (la site) in the cell of (W1-xAlx)C. The cell parameters for each specimen in the phase of W-AI-C are quite close to that of WC, while their densities are far lower than that of WC.
Resumo:
The electrooxidation polymerization of azure B on screen-printed carbon electrodes in neutral phosphate buffer was studied. The poly(azure B) modified electrodes exhibited excellent electrocatalysis and stability for dihydronicotinamide adenine dinucleotide (NADH) oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 400 mV lower than that at the bare electrodes. Different techniques, including cyclic voltammetry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy have been employed to characterize the poly (azure B) film. Furthermore, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5 muM to 100 muM.
Resumo:
Amphotericin B (AmB) is a popular drug frequently applied in the treatment of systemic fungal infections. In the presence of ruthenium (II) as the maker ion, the behavior of AmB to form ion channels in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes were studied by cyclic votammetry, AC impedance spectroscopy, and UV/visible absorbance spectroscopy. Different concentrations of AmB ranging from a molecularly dispersed to a highly aggregated state of the drug were investigated. In a fixed cholesterol or ergosterol content (5 mol %) in glassy carbon electrode-supported model membranes, our results showed that no matter what form of AmB, monomeric or aggregated, AmB could form ion channels in supported ergosterol-containing phosphatidylcholine bilayer model membranes. However, AmB could not form ion channels in its monomeric form in sterol-free and cholesterol-containing supported model membranes. On the one hand, when AmB is present as an aggregated state, it can form ion channels in cholesterol-containing supported model membranes; on the other hand, only when AmB is present as a relatively highly aggregated state can it form ion channels in sterol-free supported phosphatidylcholine bilayer model membranes. The results showed that the state of AmB played an important role in forming ion channels in sterol-free and cholesterol-containing supported phosphatidylcholine bilayer model membranes.
Resumo:
It is reported for the first time that the Pt-TiO2/C catalyst prepared with chemical reduction and sol-gel method showed the excellent electrocatalytic activity and stability for the electrooxidation of methanol. When the atom ratio of Ti to Pt in the catalysts is 1/2, the catalysts showed the best electrocatalytic properties. After the catalyst is treated at 500 degreesC, the performance is further improved. It is hopeful to use the catalyst in the pratical DMFC.
Resumo:
A high temperature and high pressure method was used to efficiently and selectively extract metallofullerenes Ln(m)@C-2n,(Ln = Y, Gd, Tb) in a closed stainless steel autoclave under inert gas protection. 1, 2, 3-Trichlorobenzene was found to be more effective and selective for the extraction of Ln@C-82 (Ln=Y, Gd, Tb) from empty fullerenes and other metallofullerene species.
Resumo:
The block copolymer polystyrene-b-poly[2-(trimethylsilyloxy)ethylene methacrylate] (PSt-b-PTMSEMA) was synthesized using atom-transfer radical polymerization (ATRP). The hydrolysis of PSt-b-PTMSEMA led to the formation of an amphiphilic block copolymer, polystyrene-b-poly(2-hydroxylethyl methacrylate) (PSt-b-PHEMA), which was characterized by GPC and H-1-NMR. TEM showed that the PSt-b-PHEMA formed a micelle, which is PSt as the core and PHEMA as the shell. Under appropriate conditions, the nickel or cobalt ion cause chemical reactions in these micelles and could be reduced easily. ESCA analysis showed that before reduction the metal existed as a hydroxide; after reduction, the metal existed as an oxide, and the metal content of these materials on the surface is more than that on the surface of the copolymer metal ion. XRD analysis showed that the metal existed as a hydroxide before reduction and existed as a metal after reduction.