53 resultados para Vector representation
Resumo:
A unified theory is advanced to describe both the lateral Goos-Hanchen (GH) effect and the transverse Imbert-Fedorov (IF) effect, through representing the vector angular spectrum of a three-dimensional light beam in terms of a two-form angular spectrum consisting of its two orthogonal polarized components. From this theory, the quantization characteristics of the GH and IF displacements are obtained, and the Artmann formula for the GH displacement is derived. It is found that the eigenstates of the GH displacement are the two orthogonal linear polarizations in this two-form representation, and the eigenstates of the IF displacement are the two orthogonal circular polarizations. The theoretical predictions are found to be in agreement with recent experimental results.
Resumo:
A new model of pattern recognition principles-Biomimetic Pattern Recognition, which is based on "matter cognition" instead of "matter classification", has been proposed. As a important means realizing Biomimetic Pattern Recognition, the mathematical model and analyzing method of ANN get breakthrough: a novel all-purpose mathematical model has been advanced, which can simulate all kinds of neuron architecture, including RBF and BP models. As the same time this model has been realized using hardware; the high-dimension space geometry method, a new means to analyzing ANN, has been researched.
Resumo:
The discrepancy between the PQCD calculation and the CLEO data for chi (c1)->gamma V (V=rho (0), omega, phi) stimulates our interest in exploring other mechanisms of chi (c1) decay. In this work, we apply an important non-perturbative QCD effect, i.e., the hadronic loop mechanism, to study chi (c1)->gamma V radiative decay. Our numerical result shows that the theoretical results including the hadronic loop contribution and the PQCD calculation of chi (c1)->gamma V are consistent with the corresponding CLEO data of chi (c1)->gamma V. We expect further experimental measurement of chi (c1)->gamma V, which will be helpful to test the hadronic loop effect on chi (c1) decay.
Resumo:
This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt-and pepper-type noise. Second, considering the local geometrical features, e. g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.
Resumo:
In this paper, we evaluated various parameters of culture condition affecting high-level soluble expression of human cyclin A, in Escherichia coli BL21(DE3), and demonstrated that the highest protein yield was obtained using TB(no glycerol) + 0.5% glucose medium at 25 degrees C. By single immobilized metal ion affinity chromatography, we got highly purified human cyclin A(2) with a yield ranged from 20 to 30 mg/L. By amyloid-diagnostic dye ThT binding and Fourier transform infrared spectroscopy, we observed a significant decrease in alpha-helix content and an increase in beta-sheet structure in cyclin A(2) inclusion body in comparison to its native protein, and confirmed the resemblance of the internal organization of cyclin A(2) inclusion body and amyloid fibrils.
Resumo:
In this article, graphical representations of DNA primary sequences were generated. Topological indices and molecular connectivity indices were calculated and used for the comparison of similarities among eight different DNA segments. The satisfactory results were achieved by this analysis.
Resumo:
In the framework of lattice fluid model, the Gibbs energy and equation of state are derived by introducing the energy (E-s) stored during flow for polymer blends under shear. From the calculation of the spinodal of poly(vinyl methyl ether) (PVME) and polystyrene (PS) mixtures, we have found the influence of E., an equation of state in pure component is inappreciable, but it is appreciable in the mixture. However, the effect of E, on phase separation behavior is extremely striking. In the calculation of spinodal for the PVME/PS system, a thin, long and banana miscibility gap generated by shear is seen beside the miscibility gap with lower critical solution temperature. Meanwhile, a binodal coalescence of upper and lower miscibility gaps is occurred. The three points of the three-phase equilibrium are forecasted. The shear rate dependence of cloud point temperature at a certain composition is discussed. The calculated results are acceptable compared with the experiment values obtained by Higgins et at. However, the maximum positive shift and the minimum negative shift of cloud point temperature guessed by Higgins are not obtained, Furthermore, the combining effects of pressure and shear on spinodal shift are predicted.