49 resultados para Turbomachines - fluid dynamics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

GaN can be used to fabricate blue/green/UV LEDs and high temperature, high power electronic devices. Ideal substrates are needed for high quality III-nitride epitaxy, which is an essential step for the manufacture of LEDs. GaN substrates are ideal to be lattice matched and isomorphic to nitride-based films. Bulk single crystals of GaN can be grown from supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. In this process, a mineralizer such as amide, imide or azide is used to attack a bulk nitride feedstock at temperatures from 200 - 500癈 and pressures from 1 - 4 kbar. Baffle design is essential for successful growth of GaN crystals. Baffle is used to separate the dissolving zone from the growth zone, and to maintain a temperature difference between the two zones. For solubility curve with a positive coefficient with respect to temperature, the growth zone is maintained at a lower temperature than that in the dissolving zone, thus the nutrient becomes supersaturated in the growth zone. The baffle opening is used to control the mixing of nutrients in the two zones, thus the transfer of nutrient from the lower part to the upper part. Ammonothermal systems have been modeled here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the flow is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. We investigated the effects of baffle opening and position on the transport phenomena of nutrient from dissolving zone to the growth zone. Simulation data have been compared qualitatively with experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flow around moving boundary is ubiquitous in engineering applications. To increse the efficienly of the algorithm to handle moving boundaries is still a major challenge in Computational Fluid Dynamics (CFD). The Chimera grid method is one type of method to handle moving boundaries. A concept of domain de-composition has been proposed in this paper. In this method, sub-domains are meshed independently and governing equations are also solved separately on them. The Chimera grid method was originally used only on structured (curvilinear) meshes. However, in a problem which involves both moving boundary and complex geometry, the number of sub-domains required in a traditional (structured) Chimera method becomes fairly large. Thus the time required in the interior boundary locating, link-building and data exchanging also increases. The use of unstructured Chimera grid can reduce the time consumption significantly by the reduction of domain(block) number. Generally speaking, unstructured Chimera grid method has not been developed. In this paper, a well-known pressure correction scheme - SIMPLEC is modified and implemented on unstructured Chimera mesh. A new interpolation scheme regarding the pressure correction is proposed to prevent the possible decoupling of pressure. A moving-mesh finite volume approach is implemented in an inertial reference frame. This approach is then used to compute incompressible flow around a rotating circular and elliptic cylinder. These numerical examples demonstrate the capability of the proposed scheme in handling moving boundaries. The numerical results are in good agreement with other experimental and computational data in literature. The method proposed in this paper can be efficiently applied to more challenge cases such as free-falling objects or heavy particles in fluid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The numerical simulation of flows past flapping foils at moderate Reynolds numbers presents two challenges to computational fluid dynamics: turbulent flows and moving boundaries. The direct forcing immersed boundary (IB) method has been devel- oped to simulate laminar flows. However, its performance in simulating turbulent flows and transitional flows with moving boundaries has not been fully evaluated. In the present work, we use the IB method to simulate fully developed turbulent channel flows and transitional flows past a stationary/plunging SD7003 airfoil. To suppress the non-physical force oscillations in the plunging case, we use the smoothed discrete delta function for interpolation in the IB method. The results of the present work demonstrate that the IB method can be used to simulate turbulent flows and transitional flows with moving boundaries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract—Burst-and-coast is the most common locomotion type in freely routine swimming of koi carps (Cyprinus carpio koi), which consists of a burst phase and a coast phase in each cycle and mostly leads to a straight-line trajectory. Combining with the tracking experiment, the flow physics of koi carp’s burst-andcoast swimming is investigated using a novel integrated CFD method solving the body-fluid interaction problem. The dynamical equations of a deforming body are formulated. Following that, the loose-coupled equations of the body dynamics and the fluid dynamics are numerically solved with the integrated method. The two burst modes, MT (Multiple Tail-beat) and HT (Half Tail-beat), which have been reported by the experiments, are investigated by numerical simulations in this paper. The body kinematics is predicted and the flow physics is visualized, which are in good agreement with the corresponding experiments. Furthermore, the optimization on the energy cost and several critical control mechanisms in burst-and-coast swimming of koi carps are explored, by varying the parameters in its selfpropelled swimming. In this paper, energetics is measured by the two mechanical quantities, total output power CP and Froude efficiency Fr. Results and discussion show that from the standpoint of mechanical energy, burst-and-coast swimming does not actually save energy comparing with steady swimming at the same average speed, in that frequently changing of speed leads to decrease of efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low noise field effect transistors and analogue switch integrated circuits (ICs) have been fabricated in semi-insulating gallium arsenide (SI-GaAs) wafers grown in space by direct ion-implantation. The electrical behaviors of the devices and the ICs have surpassed those fabricated in the terrestrially grown SI-GaAs wafers. The highest gain and the lowest noise of the transistors made from space-grown SI-GaAs wafers are 22.8 dB and 0.78 dB, respectively. The threshold back-gating voltage of the ICs made from space-grown SI-GaAs wafers is better than 8.5 V The con-elation between the characterizations of materials and devices is studied systematically. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed reaction-tran sport model was studied in a showerhead reactor for metal organic chemical vapor deposition of GaN film by using computational fluid dynamics simulation. It was found that flat flow lines without swirl are crucial to improve the uniformity of the film growth, and thin temperature gradient above the suscptor can increase the film deposition rate. By above-mentioned research, we can employ higher h (the distance from the susceptor to the inlet), P (operational pressure) and the rate of susceptor rotation to improve the film growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

采用计算流体动力学(CFD)方法对太阳能烟囱发电装置进行数值模拟,得到装置内部的温度场、速度场、压力场等分布情况。对集热棚的各种几何和物理参数进行研究和分析。结果表明,集热棚直径、太阳辐照强度、覆盖材料的透明度等诸多参数对系统效率有直接而重要的影响。


Some influence factors on efficiency in solar chimney power plant are studied by using the Computational Fluid Dynamics (CFD) method in the paper. The temperature,velocity,pressure of the air are obtained. The study shows the diameter of chimney, solar radiation, transparency of the cover are the most important influence factors, The purpose is to deliver some advice for application and development of solar chimney generation system in future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low noise field effect transistors and analogue switch integrated circuits (ICs) have been fabricated in semi-insulating gallium arsenide (SI-GaAs) wafers grown in space by direct ion-implantation. The electrical behaviors of the devices and the ICs have surpassed those fabricated in the terrestrially grown SI-GaAs wafers. The highest gain and the lowest noise of the transistors made from space-grown SI-GaAs wafers are 22.8 dB and 0.78 dB, respectively. The threshold back-gating voltage of the ICs made from space-grown SI-GaAs wafers is better than 8.5 V The con-elation between the characterizations of materials and devices is studied systematically. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The numerical simulation of flows past flapping foils at moderate Reynolds numbers presents two challenges to computational fluid dynamics: turbulent flows and moving boundaries. The direct forcing immersed boundary (IB) method has been developed to simulate laminar flows. However, its performance in simulating turbulent flows and transitional flows with moving boundaries has not been fully evaluated. In the present work, we use the IB method to simulate fully developed turbulent channel flows and transitional flows past a stationary/plunging SD7003 airfoil. To suppress the non-physical force oscillations in the plunging case, we use the smoothed discrete delta function for interpolation in the IB method. The results of the present work demonstrate that the IB method can be used to simulate turbulent flows and transitional flows with moving boundaries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A pipeline with a bypass is widely used for the pneumatic conveying of material. The double-tube-socket (DTS (R)) technology, which uses a special inner bypass, represents the current state of the art. Here, a new methodology is proposed based on the use of computational fluid dynamics (CFD) to predict the energy consumption of DTS conveying. The predicted results are in good agreement with those from pilot-scale experiments. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

采用计算流体力学(Computational Fluid Dynamics,CFD)和颗粒离散元(Discrete Element Method,DEM)耦合的方法模拟三维风沙运动,并且将三维模拟结果和二维模拟结果以及实验结果进行了对比.计算结果表明:沙粒水平速度随着高度按幂函数规律增加,沙床表面附近沙粒撞击和起跳速度的概率分布均可用对数正态函数描述,沙粒撞击和起跳角度的概率分布均可用指数函数描述,沙粒水平速度,展向速度和垂直速度在不同高度处的概率分布可分别用对数正态分布,正态分布和正态分布表示.与二维计算结果的分析对比表明:二维计算得到的颗粒速度的分布规律和三维计算结果类似,但二维计算的颗粒表观密度明显偏大,由此导致输沙量计算偏大.和实验结果的对比表明:三维计算得到的颗粒速度概率分布与实验基本保持一致

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pellet target is one of the main candidate targets in CSRm (cooler storage ring’s main ring) for hadron physics studies. Pellet speed is an important physical parameter for the target. Larger pellet speed could shorten the interacting time interval between the pellet and the cyclotron beam, and thus results in a small temperature variation for the pellet. This could make the pellet facility work in a stable condition. A fluid dynamic simulation was carried out for the pellet speed, and it was found that the maximum speed for the target pellet may be restricted to about 100 m/s even if all working parameters were set to their optimal values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pellet target is one of the main candidate targets in CSRm (cooler storage ring’s main ring) for hadron physics studies. Pellet speed is an important physical parameter for the target. Larger pellet speed could shorten the interacting time interval between the pellet and the cyclotron beam, and thus results in a small temperature variation for the pellet. This could make the pellet facility work in a stable con-dition. A fluid dynamic simulation was carried out for the pellet speed, and it was found that the maxi-mum speed for the target pellet may be restricted to about 100 m/s even if all working parameters were set to their optimal values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

在越来越受到人们关注的基于物理流体动画领域,目前分别模拟牛顿流体或粘弹性流体的方法很多,但很少有统一模拟两者的方法.文中基于光滑粒子流体动力学方法,通过对传统纳维-斯托克斯方程添加弹性应力项,提出了一种新的统一模拟牛顿流体和粘弹性流体的方法.通过实验说明该方法不仅有效,易于实现,而且具有良好的可控性,仅仅通过调节参数就可以模拟不同粘弹性、不同类型的流体现象.