242 resultados para Transparent
Resumo:
The spectroscopic properties of (Y0.92-xLa0.08Ndx)(2)O-3 transparent ceramics were investigated. According to three intensity parameters (Omega(2),Omega(4),Omega(6)) fitted by the Judd-Ofelt theory, the spectroscopic quality parameter (X-Nd), branching ratio (beta(J,J')), and quantum efficiency (eta) of Nd3+ were determined. It was found that X-Nd of the host, owing to the additive La2O3, was decreased from 1.6 to 0.46; thus beta(J,11/2) was increased from 46% to 56.82%. A figure of merit of the specimens was discussed and compared with Nd:YAG transparent ceramic. (c) 2007 Optical Society of America.
Resumo:
Spectroscopic properties of (Y0.9-xLa0.1Ybx)(2)O-3 transparent ceramic were studied. Two main absorption peaks of the specimen are centered at 940 and 970 nm, which are suitable for InGaAs laser diode pumping. The main emission peaks were located at 1032 and 1075 nm with larger emission cross-section and longer fluorescence lifetime than those of Yb:Y2O3. These properties of (Y0.9-xLa0.1Ybx)(2)O-3 transparent ceramic are favorable to achieve high efficiency and high power laser output. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The spectrum properties of transparent (Nd0.01Y0.94La0.05)(2)O-3 ceramics were investigated. It was found that all absorption bands of (Nd0.01Y0.94La0.05)(2)O-3 ceramics are broadened, of which the full width at half maximum of the peak centered at 804 nm is 8 nm and its absorption cross section is 1.02x10(-20) cm(2). The emission cross section of (Nd0.01Y0.94La0.05)(2)O-3 ceramics located at 1078 nm is 5.71x10(-20) cm(2) and its fluorescent lifetime is 0.214 ms, which are similar to those of 1.0 at. %Nd:Y2O3 ceramics. These indicate that (Nd0.01Y0.94La0.05)(2)O-3 transparent ceramics has excellent spectroscopic properties.
Resumo:
The up-conversion luminescence of Yb3+-doped yttriurn lanthanum oxide transparent ceramic was investigated. It was ascribed to cooperative luminescence originated from the coupled states of the Yb3+ ion pairs. The proper doping of La2O3 can remove the cooperative luminescence of Yb3+ ion. But excessive La2O3 (at least 10 at.%) the cooperative up-conversion of Yb3+:Y2O3 is obtained again, and the intensity of up-conversion luminescence strengthens with the increase of La2O3 content. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Transparent 1 at% Nd3+:Y1.9La0.1O3 ceramics were fabricated with nanopowders prepared by carbonate coprecipitation method. The powder compacts were sintered in H-2 atmosphere at 1550 degrees C for 30 h. The Nd3+:Y1.9La0.1O3 ceramics display uniform grains of about 50 mu m and high transparency. The highest transmittance of the ceramics reaches 67%. The strongest absorption peak is in the wavelength of 820 nm with absorption cross section of 2.48 x 10(-20) cm(2). The absorption is still high at LD wavelength 806 nm with absorption cross section of 1.78 x 10(-20) cm(2) and broad full width at half maximum (FWHM) of about 6.3 nm. The strongest emission peak was centered at 1078 nm with large stimulated emission cross section of 9.63 x 10(-20) cm(2) and broad FWHM of about 7.8 nm. The broad absorption and emission bandwidth of Nd3+:y(1.9)La(0.1)O(3) transparent ceramics are favorable to achieve the miniaturized LD pumping apparatus and ultrashort modelocked pulse laser output, respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ce3+:( Lu0.7Y0.25La0.05)(2)O-3 transparent ceramics were fabricated with nanopowders and sintered in H-2 atmosphere. The spectral properties of Ce3+:( Lu0.7Y0.25La0.05)(2)O-3 transparent ceramics were investigated and the luminescence of Ce3+ in the solid solution of Lu2O3, Y2O3 and La2O3 has been found. The ceramics has high density of 8.10g/cm(3) and short fluorescence lifetimes of 7.15 ns and 26.92 ns. It is expected to be a good fast response high temperature inorganic scintillating materials. (C) 2008 Optical Society of America.
Resumo:
Yb3+ heavy-doped yttrium lanthanum oxide transparent ceramics were fabricated and their spectroscopic properties were investigated. The absorption bands of (YbxY0.9-xLa0.1)(2)O-3 (x = 0.05-0.15) ceramics are broad at wavelength of 900-1000 nm. The absorption cross-sections centered at 974 nm and the emission cross-sections at 1031 nm of Yb3+ ion are 0.89-1.12 x 10(-20) cm(2) and 1.05 x 10(-20) cm(2) respectively. The up-conversion luminescence intensity of Yb3+-doped yttrium lanthanum oxide ceramics increased firstly, then decreased with the increase of Yb3+ ion content. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new model for analyzing the laser-induced damage process is provided. In many damage pits, the melted residue can been found. This is evidence of the phase change of materials. Therefore the phase change of materials is incorporated into the mechanical damage mechanism of films. Three sequential stages are discussed: no phase change, liquid phase change, and gas phase change. To study the damage mechanism and process, two kinds of stress have been considered: thermal stress and deformation stress. The former is caused by the temperature gradient and the latter is caused by high-pressure drive deformation. The theory described can determine the size of the damage pit. (c) 2006 Optical Society of America.
Resumo:
A red-transparent population, distributed in Pingxiang of Jiangxi Province, was identified to be triploid Carassius auratus by DNA content measurement and chromosome analysis. Artificial propagation experiments indicated that the red-transparent triploid Carassius auratus could reproduce by gynogenesis. (c) 2005 The Fisheries Society of the British Isles.
Resumo:
Chromosome behavior in meiosis was studied by air-drying, C-banding and surface-spreading methods in female intersexes of artificial triploid transparent-colored crucian carp (Carassius auratus). Chromosome pairing and contraction were obviously asynchronous. The preferential pairing of two homologous chromosomes was the major pattern of chromosome pairing, and a few triple pairing, repeated pairing, telomer or centromere associating and multiple pairing were also observed in the pachytene cells. The metaphase I cells were mainly composed of univalents, bivalents and trivalents, as well as few of other multivalents, such as tetravalents, pentavalents, hexavalents and heptavalents, were also found in some metaphase I cells. The chromosome elements including uni-, bi-, tri- and other multivalents varied considerably among the metaphase I cells, and the associating patterns of multivalents were also diverse. Some 6 n and 12 n cells, in which premeiotic endomitosis occurred once or twice, were found at the prophase and first metaphase of meiosis, and the pairing and associating patterns were basically similar to that of the triploid cells.
Resumo:
In this article, the ZnO quantum dots-SiO2 (Z-S) nanocomposite particles were first synthesized. Transparent Z-S/epoxy super-nanocomposites were then prepared by introducing calcined Z-S nanocomposite particles with a proper ratio of ZnO to SiO2 into a transparent epoxy matrix in terms of the filler-matrix refractive index matching principle. It was shown that the epoxy super-nanocomposites displayed intense luminescence with broad emission spectra. Moreover, the epoxy super-nanocomposites showed the interesting afterglow phenomenon with a long phosphorescence lifetime that was not observed for ZnO-QDs/epoxy nanocomposites. Finally, the transparent and light-emitting Z-S/epoxy super-nanocomposites were successfully employed as encapsulating materials for synthesis of highly bright LED lamps.
Resumo:
Using first-principles methods we have calculated electronic structures, optical properties, and hole conductivities of CuXO2 (X=Y, Sc, and Al). We show that the direct optical band gaps of CuYO2 and CuScO2 are approximately equal to their fundamental band gaps and the conduction bands of them are localized. The direct optical band gaps of CuXO2 (X=Y, Sc, and Al) are 3.3, 3.6, and 3.2 eV, respectively, which are consistent with experimental values of 3.5, 3.7, and 3.5 eV. We find that the hole mobility along long lattice c is higher than that along other directions through calculating effective masses of the three oxides. By analyzing band offset we find that CuScO2 has the highest valence band maximum (VBM) among CuXO2 (X=Y, Sc, and Al). In addition, the approximate transitivity of band offset suggests that CuScO2 has a higher VBM than CuGaO2 and CuInO2 [Phys. Rev. Lett. 88, 066405 (2002)]. We conclude that CuScO2 has a higher p-type doping ability in terms of the doping limit rule. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2991157]