61 resultados para Transfer of learning
Resumo:
The influence of swelling and stripping acidity on the mass transfer coefficient based on water phase and the inner diameters of membranes were studied with P507-HCl-Sm as working system in the two different kinds of hollow fiber membranes. Effects of extractant concentration, H+ concentration in aqueous phase and Sm3+ concentration on extraction rate were discussed and the corresponding reaction series were obtained. According to the investigations on the interfacial kinetics, the reaction kinetics equation and reaction rate constant were obtained.
Resumo:
The rate of extraction of Er(III) from aqueous acetate solutions at 0. 2 mol/L ionic strength by HBTMPTP in n-heptane was studied by using a constant interfacial area cell with laminar flow at (30+/- 0. 5)degrees C. The interfacial activity of HBTMPTP was investigated at n-heptane/0. 2 mol/L (H, Na)Ac (pH=5. 00) interface, The rate of Er(III) extraction was measured at different chemical compositions by varying hydrogen ion, HBTMPTP, Cyanex 302 and chlorine ion concentrations, The effect of stirring speed, temperature and special interfacial area on the rate of extraction was also studied. The results showed that, under the conditions of the experiments, the overall rate is diffusion controlled, that the impurities of Cyanex 302 have the effect of synergistic extraction.
Resumo:
The high-resolution emission spectra of KMgF3 : Eu and KMgF3 : Eu-Ce single crystals were measured at 77 K. The site substitution of Eu2+ and Eu2+-Ce3+ co-doped system in KMgF3 was discussed. Eu2+ substituted for K+ sites on three different site-symmetry: cubic, trigonal and tetragonal. The attribution of all lines occurring in the emission spectra were ascertained. The indirect energy transfer from P-6(5/2) states of Eu2+ to 4f5d states of Ce3+ in KMgF3 : Eu-Ce was observed and the energy transfer mechanism was studied. The d-d interaction among levels was proposed.
Resumo:
It was found that at neutral pH the hydroxylation reaction rate of phenol was accelerated with an increase of the amounts of 1,4-quinone (1,4-BQ), This acceleration was ascribed to the formation of semiquinone from 1,4-BQ. The semiquinone and 1,4-BQ were suggested to play a role of actual oxidant (electron transfer) in the catalytic cycle. With further reaction, most 1,4-BQ was converted into 1,4-hydroquinone (HQ) and the corresponding mechanism was proposed.
Resumo:
A series of rare earth (Gd, Eu, Tb) complexes with different substituent group carboxylic acids (ortho-hydroxylbenzioc acid, ortho-aminobenzoic acid and ortho-methoxy benzoic acid) and 1,10-phenanthroline were synthesized. The spectroscopic studies of the photophysical properties such as luminescence properties, energy match and intramolecular energy transfer were carried out. The lowest triplet state energies of ligands and the intramolecular energy transfer efficiencies were determined with the measurement of low phosphorescence spectra and lifetimes of Gd complexes.
Resumo:
The membranes of polyvinylidene fluoride, which were synthesized by our laboratory, were used to study the transfer and extraction performances of Nd(III) and Sm(III) with the extraction system of HEH/EHP-kerosene. The results show that the membrane material was suitable to the study on membrane extraction, and could offer a good transfer performance in the membrane construction parameters selected, The extraction reaction in the membrane module was the same as that in liquid-liquid process, HEH/EHP ammoniated for increasing the mass transfer coefficient was almost the same with increasing the concentration of HEH/EHP, and H+ was still transferred first at higher pH range of feed solution when HEH/EHP was ammoniated, The controlling model of the membrane extraction process was the diffusion model accompanied by interfacial reaction, The controlling function of interfacial reaction would increase gradually with the increasing of the membrane pore size. The mass transfer coefficient increased when extraction and stripping were carried out simultaneously.
Resumo:
A series of binary and ternary rare earth complexes with para-substitued benzoic acids and 1,10-phenanthroline were synthesized. The phosphorescence spectra were measured and the lowest tripler state energies of ligands were determined, the phosphorescence lifetimes were obtained and intramolecular energy transfer mechanism between ligands was studied. The luminescence properties were also measured and were in agreement with the prediction. The energy match and intramolecular energy transfer process in these binary and ternary complexes were discussed in detail.
Resumo:
A series of binary and ternary rare earth (Gd, Eu, Tb) complexes with ortho hydroxyl benzoic acid, pam aminobenzoic acid, nicotinic acid and 1,10-phenanthroline were synthesized. Phosphorescence spectra and lifetimes of Gd complexes were measured and the lowest triplet state energies of gadolinium binary complexes end the intramolecular energy transfer efficiencies were determined. The luminescence properties and energy transfer process of Eu3+ and Tb3+ complexes were discussed.
Resumo:
Thirteen kinds of binary and ternary complexes of rare earth (Gd, Eu,Tb) with ortho (para) aminobenzoic acid and 1.10--phenanthroline were synthesized and characterized. The phosphorescence spectra and lifetimes of gadolinium complexes were measured and the lowest triplet state energies of ligands and the energy transfer efficiencies between ligands were determined. The luminescence properties and intramolecular energy transfer of these complexes were studied in details.
Resumo:
The transfer of chloride ions into a low resistance anion exchange membrane (AEM) was investigated by cyclic voltammetry (CV) and electrochemical impedance spectra. In all cases, concentration polarization of Cl- ions is exterior to the membrane. It controls the flux and produces the limiting currents: either steady state or transient (peak type) current. In CV experiments, when the size of the holes in the membrane was much smaller than the distance between membrane holes, the Cl- anion transfer showed steady state voltammetric behavior. Each hole in the membrane can be regarded as a microelectrode and the membrane was equivalent to a microelectrode array in this condition. When the hole in the membrane was large or the distance between membrane holes was small, the CV curve of the Cl- anion transfer across the membrane showed a peak shape, which was attributed to linear diffusion. In AC impedance measurement, the impedance spectrum of the membrane system was composed of two semicircles at low DC bias, corresponding to the bulk characteristics of the membrane and the kinetic process of ion transfer, respectively. The bulk membrane resistance increases with increasing DC bias and only one semicircle was observed at higher DC bias. The parameters related to kinetic and membrane properties were discussed.
Resumo:
The photoluminescence of Ce3+, Tb3+ and Sm3+, and energy transfer from Ce3+ to Tb3+, Dy3+ and Sm3+ in Mg2Y8(SiOd(4))(6)O-2 are reported and discussed. The Ce3+ ion shows blue luminescence under UV excitation, and occupies simultaneously the 4f site and 6h site in the host lattice. The optimum concentrations for the D-5(3) and D-5(4) emissions of Tb3+ and the (4)G(5/2) emission of Sm3+ are determined to be 0.04, 0.20 and 0.10 mol in every mol of Mg2Y8(SiO4)(6)O-2, respectively. The critical distances responsible for the cross-relaxation between the D-5(3)-D-5(4) and F-7(6)-F-7(0) transitions of Tb3+ and between the (4)G(5/2)-F-4(9/2) and H-6(5/2)-F-4(9/2) transitions of Sm3+ are estimated to be 1.43 and 1.06 nm, respectively. Both Tb3+ and Dy3+ can be sensitized by Ce3+, but Ce3+ and Sm3+ quench each other.
Resumo:
The direct electron transfer process of horse heart myoglobin, which was immobilized into a new type of cryo-hydrogel membrane on a glassy carbon electrode surface, was studied and the characteristics of this cryo-hydrogel immobilized protein electrode were discussed.
Resumo:
The transfer of bis-1:11 molybdosilicate heteropolyanion with dysprosium across the water/nitrobenzene interface has been investigated by chronopotentiometry with linear current scanning and cyclic voltammetry. The strandard transfer potential and Gibbs energy estimated from cyclic voltammetry were 0.102V and -39.5kJ.mol(-1), respectively. The kinetic parameters of the transfer were determinated by chronopotentiometry with the linear current scanning.
Resumo:
The transfer behavior of the heteropoly anion [H3PW11O39]4- and the isopoly anion [H2W12O39]4- across the water/nitrobenzene interface was investigated by cyclic voltammetry and chronopotentiometry with linear current scanning. The transfer processes were