34 resultados para Time-varying system


Relevância:

80.00% 80.00%

Publicador:

Resumo:

针对EMS型磁悬浮列车悬浮系统的非线性、迟滞性及模型不确定的特点,本文采用了模糊自适应整定PID控制技术来满足其对动态和静态性能的要求。仿真结果表明模糊自适应整定PID控制器学习精度高、收敛速度快、在系统同时存在磁悬浮系统参数的变化和负载扰动时.具有较强的鲁棒性和抗干扰能力。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

从工业生产实际要求出发 ,提出了大供电稳流系统专家控制方案 ,它使控制器的理论设计变得简单、方便。工业生产实用结果表明 ,系统可靠性高 ,实时性好。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The real media always attenuate and distort seismic waves as they propagate in the earth. This behavior can be modeled with a viscoelastic and anisotropic wave equation. The real media can be described as fractured media. In this thesis, we present a high-order staggered grid finite-difference scheme for 2-D viscoelastic wave propagation in a medium containing a large number of small finite length fractures. We use the effective medium approach to compute the anisotropic parameters in each grid cell. By comparing our synthetic seismogram by staggered-grid finite-difference with that by complex-ray parameter ray tracing method, we conclude that the high-order staggered-grid finite-difference technique can effectively used to simulate seismic propagation in viscoelastic-anisotropic media. Synthetic seismograms demonstrate that strong attenuation and significant frequency dispersion due to viscosity are important factors of reducing amplitude and delaying arrival time varying with incidence angle or offset. On the other hand, the amount of scattered energy not only provides an indicator of orientation of fracture sets, but can also provide information about the fracture spacing. Analysis of synthetic seismograms from dry- and fluid-filled fractures indicates that dry-filled fractures show more significant scattering on seismic wavefields than fluid-filled ones, and offset-variations in P-wave amplitude are observable. We also analyze seismic response of an anticlinal trap model that includes a gas-filled fractured reservoir with high attenuation, which attenuates and distorts the so-called bright spot.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the large developments of the seismic sources theory, computing technologies and survey instruments, we can model and rebuild the rupture process of earthquakes more realistically. On which earthquake sources' properties and tectonic activities law are realized more clearly. The researches in this domain have been done in this paper as follows. Based on the generalized ray method, expressions for displacement on the surface of a half-space due to an arbitrary oriented shear and tensile dislocation are also obtained. Kinematically, fault-normal motion is equivalent to tensile faulting. There is some evidence that such motion occurs in many earthquakes. The expressions for static displacements on the surface of a layered half-space due to static point moment tensor source are given in terms of the generalized reflection and transmission coefficient matrix method. The validity and precision of the new method is illustrated by comparing the consistency of our results with the analytical solution given by Okada's code employing same point source and homogenous half-space model. The computed vertical ground displacement using the moment tensor solution of the Lanchang_Gengma earthquake displays considerable difference with that of a double couple component .The effect of a soft layer at the top of the homogenous half-space on a shallow normal-faulting earthquake is also analyzed. Our results show that more seismic information would be obtained utilizing seismic moment tensor source and layered half-space model. The rupture process of 1999 Chi-Chi, Taiwan, earthquake investigated by using co-seismic surface displacement GPS observations and far field P-wave records. In according to the tectonic analysis and distributions of aftershock, we introduce a three-segment bending fault planes into our model. Both elastic half-space models and layered-earth models to invert the distribution of co-seismic slip along the Chi-Chi earthquake rupture. The results indicate that the shear slip model can not fit horizontal and vertical co-seismic displacements together, unless we add the fault-normal motion (tensile component) in inversions. And then, the Chi Chi earthquake rupture process was obtained by inversion using the seismograms and GPS observations. Fault normal motions determined by inversion, concentrate on the shallow northern bending fault from Fengyuan to Shuangji where the surface earthquake ruptures reveal more complexity and the developed flexural slip folding structures than the other portions of the rupture zone For understanding the perturbation of surface displacements caused by near-surface complex structures, We have taken a numeric test to synthesize and inverse the surface displacements for a pop-up structure that is composed of a main thrust and a back thrust. Our result indicates that the pop-up structure, the typical shallow complex rupture that occurred in the northern bending fault zone form Fengyuan to Shuangji, can be modeled better by a thrust fault added negative tensile component than by a simple thrust fault. We interpret the negative tensile distributions, that concentrate on the shallow northern bending fault from Fengyuan to Shuangji, as a the synthetic effect including the complexities of property and geometry of rupture. The earthquake rupture process also reveal the more spatial and temporal complexities form Fenyuan to SHuangji. According to the three-components teleseismic records, the S-wave velocity structure beneath the 59 teleseismic stations of Taiwan obtained by using the transform function method and the SA techniques. The integrated results, the 3D crustal structure of Taiwan reveal that the thickest part of crustal local in the western Central Range. This conclusion is consistent with the result form the Bouguer gravity anomaly. The orogenic evolution of Taiwan is young period, and the developing foot of Central Range dose not in static balancing. The crustal of Taiwan stays in the course of dynamic equilibrium. The rupture process of 2003)2,24,Jiashi, Xinjiang earthquake was estimated by the finite fault model using far field broadband P wave records of CDSN and IRIS. The results indicate that the earthquake focal is north dip trust fault including some left-lateral strike slip. The focal mechanism of this earthquake is different form that of earthquakes occurred in 1997 and 1998, but similar to that of 1996, Artux, Xinjiang earthquake. We interpreted that the earthquake caused trust fault due to the Tarim basin pushing northward and orogeny of Tianshan mountain. In the end, give a brief of future research subject: Building the Real Time Distribute System for rupture process of Large Earthquakes Based on Internet.