50 resultados para Therapeutics, Physiological.
Resumo:
Physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms were studied in a large net cage in Meiliang Bay, a hypereutrophic region of Lake Taihu. We sampled four fishes: the phytoplanktivorous Hypophthalmichthys molitrix and Aristichthys nobilis, the omnivorous Carassius auratus, and the carnivorous Culter ilishaeformis. Alterations of the antioxidant (GSH) and the major antioxidant enzymes (CAT, SOD, GPx, GST) in livers were monitored monthly, and the ultrastructures of livers were compared between the bloom and post-bloom periods. During the cyanobacterial blooms, the phytoplanktivorous fishes displayed only slight ultrastructural changes in liver, while the carnivorous fish presented the most serious injury as swollen endomembrane system and morphologically altered nuclei in hepatocytes. Biochemically, the phytoplanktivorous fishes possessed higher basal GSH concentrations and better correlations between the major antioxidant enzymes in liver, which might be responsible for their powerful resistance to MCs. This article provided physiological and toxicological evidences for the possible succession of fish communities following occurrence of toxic cyanobacterial blooms and also for the applicability of using phytoplanktivorous fish to counteract toxic cyanobacterial blooms in natural waters. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Toxic Microcystis blooms frequently occur in eutrophic water bodies and exist in the form of colonial and unicellular cells. In order to understand the mechanism of Microcystis dominance in freshwater bodies, the physiological and biochemical responses of unicellular ( 4 strains) and colonial ( 4 strains) Microcystis strains to phosphorus ( P) were comparatively studied. The two phenotype strains exhibit physiological differences mainly in terms of their response to low P concentrations. The growth of four unicellular and one small colonial Microcystis strain was significantly inhibited at a P concentration of 0.2 mg l - 1; however, that of the large colonial Microcystis strains was not inhibited. The results of phosphate uptake experiments conducted using P- starved cells indicated that the colonial strains had a higher affinity for low levels of P. The unicellular strains consumed more P than the colonial strains. Alkaline phosphatase activity in the unicellular strains was significantly induced by low P concentrations. Under P- limited conditions, the oxygen evolution rate, Fv/ Fm, and ETRmax were lower in unicellular strains than in colonial strains. These findings may shed light on the mechanism by which colonial Microcystis strains have an advantage with regard to dominance and persistence in fluctuating P conditions.
Resumo:
A strain of microalgae (Anabaena siamensis) had been cultured in a miniaturized bioreactor during a retrievable satellite flight for 15 days. By means of remote sensing equipment installed in the satellite, we gained the growth curve of microalgae population in space every day in real time. The curve indicated that the growth of microalgae in space was slower than the control on ground. Inoculation of the retrieved microalgae culture showed that the growth rate was distinctively higher than ground control. But after several generations, both cultures indicated similar growth rates. Those data showed that algae, can adapt to space environment easily which may be valuable for designing more complex bioreactor and controlled ecological life support system in future experiment. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Freshwater Microcystis may form dense blooms in eutrophic lakes. It is known to produce a family of related cyclic hepatopeptides (microcystins, MC) that constitute a threat to aquatic ecosystems. Most toxicological studies of microcystins have focused on aquatic animals and plants, with few examining the possible effects of microcystins on phytoplankton. In this study we chose the unicellular Synechococcus elongatus (one of the most studied and geographically most widely distributed cyanobacteria in the picoplankton) as the test material and investigated the biological parameters: growth, pigment (chlorophyll-a, phycocyanin), photosynthetic activity, nitrate reductase activity, and protein and carbohydrate content. The results revealed that microcystin-RR concentrations above 100 mug (.) L-1 significantly inhibited the growth of Synechococcus elongatus. In addition, a change in color of the toxin-treated algae (chlorosis) was observed in the experiments. Furthermore, MC-RR markedly inhibited the synthesis of the pigments chlorophyll-a and phycocyanin. A drastic reduction in photochemical efficiency of PSII (F-v/F-m) was found after a 96-h incubation. Changes in protein and carbohydrate concentrations and in nitrate reductase activity also were observed during the exposure period. This study aimed to evaluate the mechanisms of microcystin toxicity on a cyanobacterium, according to the physiological and biochemical responses of Synechococcus elongatus to different doses of microcystin-RR. The ecological role of microcystins as an allelopathic substance also is discussed in the article. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.
Resumo:
Superoxide dismutase activity in water hyacinth leaves was not sensitive to small changes in environmental pH, but declined markedly with greater pH changes. KCN inhibited superoxide dismutase activity, suggesting that the enzyme was mainly composed of the Cu-Zn form. Low temperature (2-degrees-C) treatment caused a decline in superoxide dismutase activity. This effect became more pronounced as the treatment time was prolonged. Furthermore, the decline was much more significant than reductions of glucose-6-phosphate dehydrogenase activity or respiration under comparable conditions. With increasing physiological age, superoxide dismutase activity declined and was significantly lower in old than in young leaves. Therefore, superoxide dismutase activity might be employed as one of physiological parameters in studying leaf senescence.
Resumo:
Purpose: To investigate the effects of gamma-ray radiation on the physiological, morphological characters and chromosome aberrations of minitubers. Materials and methods: Minitubers of one potato cultivar, 'Shepody', were irradiated with 8 doses of gamma-rays (0, 10, 20, 30, 40, 50, 60, 70 and 80 Gy [Gray]) to investigate the effects of radiation on emergence ability, plant height and root length, morphological variations, chromosome aberrations, M-1 (first generation mutants) tuber number and size of minituber plants. Results: Compared with the non-irradiated controls, the whole period of emergence was prolonged by 10-15 days for minitubers treated with gamma-ray radiation, but low doses of radiation (10, 20 and 30 Gy) promoted the emergence percentage of minitubers. With an increase in radiation dose, the emergence percentage, plant height and root length of minituber plants were significantly inhibited at 40 and 50 Gy. No emergence occurred at 60 Gy and higher doses. After radiation, a series of morphological variations and chromosome aberrations appeared in minituber plants. Radiation with 20 Gy promoted tuber formation, and the average number and diameter of M-1 tubers per plant were significantly increased over the control by 71% and 34%, respectively. Conclusion: Low doses of radiation (10-30 Gy) might be used as a valuable parameter to study the improvement of minitubers by gamma-ray radiation treatment.
Resumo:
We reported here four structures of lanthanide-amino acid complexes obtained under near physiological pH conditions and their individual formula can be described as [Tb-2(DL-Cys)(4)(H2O)(8)]Cl-2 (1), [Eu-4(mu(3)-OH)(4)(L-Asp)(2)(L-HAsp)(3)(H2O)(7)] Cl center dot 11.5H(2)O (2), [Eu-8-(L-HVal) (16)(H2O)(32)]Cl-24 center dot 12.5H(2)O (3), and [Tb-2(DL-HVal)(4)(H2O)(8)]Cl-6 center dot 2H(2)O (4). These complexes showed diverse structures and have shown potential application in DNA detection. We studied the interactions of the complexes with five single-stranded DNA and found different fluorescence enhancement, binding affinity and binding stoichiometry when the complexes are bound to DNA.
Resumo:
In this paper, the interaction mechanism between La3+ and microperoxidase-11 (MP-11) in the imitated physiological solution was investigated with the electrochemical and spectroscopic methods. It was found that when the molar ratio of La3+, and MP-11 is low, such as 2, La3+ can coordinate with oxygen in the propionic acid group of the heme group in the MP-11 molecule, forming the La-MP-11 complexes and leading to the increase in the non-planarity of the porphyrin cycle in the heme group and then the increase in the extent of exposure of the electrochemically active center, Fe(I I I) in the porphyrin cycle of the heme group. The increase in the extent of exposure of the electrochemically active center, Fe(III) in the porphyrin cycle of the heme group would increase the reversibility of the electrochemical reaction of the La-MP-11 complexes and its electrocatalytic activity for the reduction of H2O2. The results of the chromatographic analysis demonstrated that the average molar ratio of La3+ and MP-11 in the La-MP-11 complexes is 1.62.When the molar ratio of La3+ and MP-11 is high, such as 3, La3+ would shear some amino acid residues of the peptide of MP-11. Therefore, many La3+ ions can bind to the oxygen- and/or nitrogen-containing groups in the sheared amino acid residues except coordinating with the sheared and non-sheared MP-11 molecules.
Resumo:
In this paper, the interaction between La3+ and microperoxidase-11 (MP-11) in the imitated physiological solution was investigated with the electrochemical method, circular dichroism (CD) and ultraviolet-visible (UV-vis) absorption spectroscopy. It was found that the interaction ways between La3+ and MP-11 are different with increasing the molar ratio of La3+ and MP-11. When the molar ratio of La3+ and MP-11 is less than 2, La3+ mainly interacts with the metacetonic acid group of the heme group in the MP-11 molecules, causing the increase in the non-planarity of the porphyrin cycle in the heme group and the decrease in the content of the random coil conformation of MP-11. These structural changes would increase the exposure extent of the electrochemical active center of MP-11 and thus, La3+ can promote the electrochemical reaction of MP-11 and its electrocatalytic activity for the reduction of H2O2 at the glassy carbon (GC) electrode. However, when the molar ratio of La3+ and MP-11 is larger than 3, except binding to the carbonyl oxygen of the metacetonic acid group in the heme group, La3+ interacts also with the oxygen-containing groups of the amides in the polypeptide chains of the MP-11 molecules, leading to the increase in the contents of the random coil conformation in the peptide of the MP-11 molecule, comparing with that for the molar ratio of less than 2.
STUDIES ON THE COORDINATION OF TB(III) AND CA(III) WITH AMINO-ACID UNDER THE PHYSIOLOGICAL CONDITION
Resumo:
Tb(Ca)-glycine, Tb(Ca)-alanine, Tb(Ca)-glycine-alanine systems were studied by potentiometry (37%, I = 0.15 mol/L NaCl). The stability constants of complexes and distribution of species in ternary system were obtained. The results show Ca