62 resultados para Theodora, Empress, consort of Justinian I, Emperor of the East, d. 548.
Resumo:
Sectional velocity distribution of the East China Sea Kuroshio is one of the basic points in the study of the Kuroshio. Hydrographic temperature and salinity data at G-PN section in the East China Sea from June 1955 to November 2001 are collected and properly processed to calculate the geostrophic current using dynamic height method at the transect of the Kuroshio. After analysis of calculation results, the basic current structure of the Kuroshio in its main part is examined together with scalar estimate and characters of multi- core structure, and spacial-temporal variations of current cores' position. Main result shows that (1) single-core structure, double-core structure and multi-core structure are basic forms in axial part of the Kuroshio; (2) abvious temporal variations exist in current structure of the Kuroshio; (3) the current of structure of the Kuroshio has distinctly seasonal association. The number of current cores is on the high side of core numbers in average and multi-core stucture appears in fall mostly.
Resumo:
Resting cysts of the marine phytoplanktonic dinoflagellate Scrippsiella spp. are encountered in coastal habitats and shallow seas all over the world. Identification of Scrippsiella species requires information on cyst morphology because the plate pattern of the flagellated cell is conserved. Cysts from sediments of the East China Sea were identified based on traits from both the cysts and the thecal patterns of germinated cells. Calcareous cysts belonged predominantly to S. trochoidea (F. Stein) A. R. Loebl., S. rotunda J. Lewis, and S. precaria Montresor et Zingone. The former two species also produced smooth and noncalcified cysts in the field. A new species, S. donghaienis H. Gu sp. nov, was obtained from six noncalcified cysts with organic spines. These cysts are spherical, full of pale white and greenish granules with a mesoepicystal archeopyle. The vegetative cells consist of a conical epitheca and a round hypotheca with a plate formula of po, x, 4', 3a, 7 '', 6c (5c + t), 6 s, 5''', 2'''' and are morphologically indistinguishable from S. trochoidea. Results of internal transcribed spacer (ITS) sequence comparisons revealed that S. donghaienis was distinct from the S. trochoidea complex and appeared nested within the Calciodinellum/Calcigonellum clade. Culture experiments showed that the presence of a red body in the cyst and the shape of the archeopyle were constant within cell lines from one generation to the next, while the morphological features of the cyst wall, such as calcification and spine shape, appeared to be phenotypically plastic.
Resumo:
During late spring and early summer of 2005, large-scale (> 15 000 km(2)), mixed dinoflagellate blooms developed along the the coast of the East China Sea. Karenia mikimotoi was the dominant harmful algal bloom species in the first stage of the bloom (late May) and was succeeded by Prorocentrum donghaiense approximately 2 wk later. Samples were collected from different stations along both north-south and west-east transects, from the Changjiang River estuary to the south Zhejiang coast, during 3 cruises of the Chinese Ecology and Oceanography of Harmful Algal Blooms Program, before and during the bloom progression. Nitrogen isotope tracer techniques were used to measure rates of NO3-, NH4+, urea, and glycine uptake during the blooms. High inorganic nitrogen (N), but low phosphorus (P) loading from the Changjiang River led to high dissolved inorganic N:dissolved inorganic P ratios in the sampling area and indicate the development of P limitation. The rates of N-15-uptake experiments enriched with PO43- were enhanced compared to unamended samples, suggesting P limitation of the N-uptake rates. The bloom progression was related to the change in availability of both organic and inorganic N and P. Reduced N forms, especially NH4+, were preferentially taken up during the blooms, but different bloom species had different rates of uptake of organic N substrates. K mikimotoi had higher rates of urea uptake, while P. donghaiense had higher rates of glycine uptake. Changes in the availability of reduced N and the ratios of N:P in inorganic and organic forms were suggested to be important in the bloom succession. Nutrient ratios and specific uptake rates of urea were similar when compared to analogous blooms on the West Florida Shelf.
Resumo:
Calanus sinicus aggregate at the depth of 40-60 m (ambient temperature is 16 degreesC) in the waters of the continental shelf of the Yellow Sea during summer. in animals found in near shore regions, there are changes in digestive gut cells structure, digestive enzyme activity (protease, amylase), and tissue enzyme (alkaline phosphatase (ALP)), which may represent adaptations by this cold-water animal to a sharp seasonal increase in temperature of 6-23 degreesC. The activities of the digestive enzymes (protease and amylase) are very low in animals at stations near the estuary of Yangtse River, whereas they are relatively high in animals at stations in the central Yellow Sea, During summer, B-cells of the intestine and the villi intestinalis disappear in animals that do not feed at stations near the estuary of the Yangtse River. Respiration rates were undetectable or quite low during summer in C. sinicus from stations near the estuary of the Yangtse River, whereas they were relatively high at stations in the central Yellow Sea. Based upon the morphological characteristics of the digestive gut structure, enzyme levels, respiration rates, and the distribution of C. sinicus, we concluded that C. sinicus might be dormant during summer in the near shore areas of the East China Sea while remaining active in the central Yellow Sea. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The phase diagram of the dodecyl dimethyl ammonium hydroxyl propyl sulfonate(DDAHPS)/1-pentanol(C5H11OH)/water ternary system has been established. It contains two isotropic monophase regions (L-1 and L-2) and a liquid crystalline region (L.C.). The isotropic phase regions have been investigated by means of Raman spectroscopy and conductivity.
Resumo:
Broad bandwidth group match conditions are reported for a noncollinear type I optical parametric process. The theoretical calculations corresponding to two special situations in practice were made, respectively, which are in accordance with the published experimental results. Furthermore, we provide a method to not only achieve maximal parametric bandwidth output but also match the group velocities between three waves. (c) 2006 Optical Society of America.
Resumo:
Three kinds of Er3+-doped tellurite glasses with different hydroxyl groups are prepared by the conventional melt-quenching method. Infrared spectra are measured to estimate the exact content of OH- groups in samples. The maximum phonon energy in glasses are obtained by measuring the Raman scattering spectra. The strength parameters Omega(t) (t = 2, 4, 6) for all the samples are calculated and compared. The nonradiative decay rate of the Er3+ I-4(13/2) -> I-4(15/2) transition are calculated for the glass samples with different phonon energy and OH- group contents. Finally, the effect of OH- groups on fluorescence decay rate of Er3+ is analysed, the constant KOH-Er Of TWN, TZPL and TZL glasses are calculated to be 9.2 x 10(-19) cm(4)s(-1), 5.9 x 10(-19) cm(4)s(-1), and 3.5 x 10(-19) cm(4)s(-1), respectively.
Resumo:
Background: The DExD/H domain containing RNA helicases such as retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are key cytosolic pattern recognition receptors (PRRs) for detecting nucleotide pathogen associated molecular patterns (PAMPs) of invading viruses. The RIG-I and MDA5 proteins differentially recognise conserved PAMPs in double stranded or single stranded viral RNA molecules, leading to activation of the interferon system in vertebrates. They share three core protein domains including a RNA helicase domain near the C terminus (HELICc), one or more caspase activation and recruitment domains (CARDs) and an ATP dependent DExD/H domain. The RIG-I/MDA5 directed interferon response is negatively regulated by laboratory of genetics and physiology 2 (LGP2) and is believed to be controlled by the mitochondria antiviral signalling protein (MAVS), a CARD containing protein associated with mitochondria. Results: The DExD/H containing RNA helicases including RIG-I, MDA5 and LGP2 were analysed in silico in a wide spectrum of invertebrate and vertebrate genomes. The gene synteny of MDA5 and LGP2 is well conserved among vertebrates whilst conservation of the gene synteny of RIG-I is less apparent. Invertebrate homologues had a closer phylogenetic relationship with the vertebrate RIG-Is than the MDA5/LGP2 molecules, suggesting the RIG-I homologues may have emerged earlier in evolution, possibly prior to the appearance of vertebrates. Our data suggest that the RIG-I like helicases possibly originated from three distinct genes coding for the core domains including the HELICc, CARD and ATP dependent DExD/H domains through gene fusion and gene/domain duplication. Furthermore, presence of domains similar to a prokaryotic DNA restriction enzyme III domain (Res III), and a zinc finger domain of transcription factor (TF) IIS have been detected by bioinformatic analysis. Conclusion: The RIG-I/MDA5 viral surveillance system is conserved in vertebrates. The RIG-I like helicase family appears to have evolved from a common ancestor that originated from genes encoding different core functional domains. Diversification of core functional domains might be fundamental to their functional divergence in terms of recognition of different viral PAMPs.
Resumo:
Phytoplanktivorous bighead carp were injected i.p. with extracted microcystins (mainly MC-RR and -LR) at two doses, 200 and 500 MC-LReq. mu g kg(-1) bw, and the changes in extractable MCs in liver and in the ultrastructure of hepatocytes were studied at 1, 3, 12, 24 and 48 h after injection. Quantitative and qualitative determinations of MCs in the liver were conducted by HPLC and LC-MS, respectively. MC concentration in the liver reached the maxima at 12 It (2.89 mu g MCs g(-1) dry weight at the lower dose) or at 3 h (5.43 mu g MCs g(-1) dry weight at the higher dose) post-injection, followed by sharp declines afterwards, whereas the ultrastructural changes of hepatocytes in both dose groups suggest progressive increases in severity toward the directions of apoptosis and necrosis from I to 24 h, respectively. There were two new findings in fish: widening of intercellular spaces was among the early ultrastructural changes induced by MCs and ultrastructural recovery of hepatocytes was evident at 48 h post-injection in both dose groups. Both the present and previous studies suggest that with in vivo or in vitro exposure to microcystins, hepatocyte damage in fish tends to proceed toward the direction of apoptosis at lower MC concentrations but toward the direction of necrosis at high MC concentrations. The temporal dynamics of MCs in the liver suggest that bighead carp may have a mechanism to degrade or bind MC-LR actively after it enters the blood system. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The geometrical parameters and electronic structures of C60, (A partial derivative C60) (A = Li, Na, K, Rb, Cs) and (H partial derivative C60) (H = F, Cl, Br, I) have been calculated by the EHMO/ASED (atom superposition and electron delocalization) method. When putting a central atom into the C60 cage, the frontier and subfrontier orbitals of (A partial derivative C60) (A = Li, Na, K, Rb, Cs) and (H partial derivative C60) (H = F, Cl) relative to those of C60 undergo little change and thus, from the viewpoint of charge transfer, A (A = Li, Na, K, Rb, Cs) and H (H = F, Cl) are simply electron donors and acceptors for the C60 cage resPeCtively. Br is an electron acceptor but it does influence the frontier and subfrontier MOs for the C60 cage, and although there is no charge transfer between I and the C60 cage, the frontier and subfrontier MOs for the C60 cage are obviously influenced by I. The stabilities DELTAE(X) (DELTAE(X) = (E(X) + E(C60)) - E(x partial derivative C60)) follow the sequence I < Br < None < Cl < F < Li < Na < K < Rb < Cs while the cage radii r follow the inverse sequence. The stability order and the cage radii order have been explained by means of the (exp-6-1) potential.