99 resultados para THERMAL DEFORMATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constitutive relations and kinematic assumptions on the composite beam with shape memory alloy (SMA) arbitrarily embedded are discussed and the results related to the different kinematic assumptions are compared. As the approach of mechanics of materials is to study the composite beam with the SMA layer embedded, the kinematic assumption is vital. In this paper, we systematically study the kinematic assumptions influence on the composite beam deflection and vibration characteristics. Based on the different kinematic assumptions, the equations of equilibrium/motion are different. Here three widely used kinematic assumptions are presented and the equations of equilibrium/motion are derived accordingly. As the three kinematic assumptions change from the simple to the complex one, the governing equations evolve from the linear to the nonlinear ones. For the nonlinear equations of equilibrium, the numerical solution is obtained by using Galerkin discretization method and Newton-Rhapson iteration method. The analysis on the numerical difficulty of using Galerkin method on the post-buckling analysis is presented. For the post-buckling analysis, finite element method is applied to avoid the difficulty due to the singularity occurred in Galerkin method. The natural frequencies of the composite beam with the nonlinear governing equation, which are obtained by directly linearizing the equations and locally linearizing the equations around each equilibrium, are compared. The influences of the SMA layer thickness and the shift from neutral axis on the deflection, buckling and post-buckling are also investigated. This paper presents a very general way to treat thermo-mechanical properties of the composite beam with SMA arbitrarily embedded. The governing equations for each kinematic assumption consist of a third order and a fourth order differential equation with a total of seven boundary conditions. Some previous studies on the SMA layer either ignore the thermal constraint effect or implicitly assume that the SMA is symmetrically embedded. The composite beam with the SMA layer asymmetrically embedded is studied here, in which symmetric embedding is a special case. Based on the different kinematic assumptions, the results are different depending on the deflection magnitude because of the nonlinear hardening effect due to the (large) deflection. And this difference is systematically compared for both the deflection and the natural frequencies. For simple kinematic assumption, the governing equations are linear and analytical solution is available. But as the deflection increases to the large magnitude, the simple kinematic assumption does not really reflect the structural deflection and the complex one must be used. During the systematic comparison of computational results due to the different kinematic assumptions, the application range of the simple kinematic assumption is also evaluated. Besides the equilibrium study of the composite laminate with SMA embedded, the buckling, post-buckling, free and forced vibrations of the composite beam with the different configurations are also studied and compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is focused on improvement of the adhesion properties of the interface between plasma-sprayed coatings and substrates by laser cladding technology (LCT), Within the laser-clad layer there is a gradient distribution in chemical composition and mechanical properties that has been confirmed by SEM observation and microhardness measurement. The residual stress due to mismatches in thermal and mechanical properties between coatings and substrates can be markedly reduced and smoothed out. To examine the changes of microstructure and crack propagation in the coating and interface during loading, the three-point bending test has been carried out in SEM with a loading device. Analysis of the distribution of shear stress near the interface under loading has been made using the FEM code ANSYS, The experimental results show clearly that the interface adhesion can be improved with LCT pretreatment, and the capability of the interface to withstand the shear stress as well as to resist microcracking has been enhanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Centrifuge experiments are carried out to investigate the responses of suction bucket foundations under horizontal dynamic loading. The effects of loading amplitude, the size of the bucket and the structural weight on the dynamic responses are investigated. It is shown that, when the loading amplitude is over a critical value, the sand at the upper part around the bucket softens or even liquefies. The liquefactio...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

以激光熔凝表面强韧化处理为背景,应用空间弹塑性有限单元和高精度数值算法同时考虑材料组织性能的变化模拟工件的温度场及残余应力,研究激光熔凝加工中瞬时温度场及残余应力数值模拟,同时考虑相变潜热及相变塑性的影响,用算例验证了模型的正确性,给出了不同时刻温度场分布及残余应力分布。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient thermal stress problem of an inner-surface-coated hollow cylinder with multiple pre-existing surface cracks contained in the coating is considered. The transient temperature, induced thermal stress, and the crack tip stress intensity factor (SIF) are calculated for the cylinder via finite element method (FEM), which is exposed to convective cooling from the inner surface. As an example, the material pair of a chromium coating and an underlying steel substrate 30CrNi2MoVA is particularly evaluated. Numerical results are obtained for the stress intensity factors as a function of normalized quantities such as time, crack length, convection severity, material constants and crack spacing. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical deformations of nickel nanowire subjected to uniaxial tensile strain at 300 K are simulated by using molecular dynamics with the quantum corrected Sutten-Chen many-body force field. We have used common neighbor analysis method to investigate the structural evolution of Ni nanowire during the elongation process. For the strain rate of 0.1%/ps, the elastic limit is up to about 11% strain with the yield stress of 8.6 GPa. At the elastic stage, the deformation is carried mainly through the uniform elongation of the distances between the layers (perpendicular to the Z-axis) while the atomic structure remains basically unchanged. With further strain, the slips in the {111} planes start to take place in order to accommodate the applied strain to carry the deformation partially, and subsequently the neck forms. The atomic rearrangements in the neck region result in a zigzag change in the stress-strain curve; the atomic structures beyond the region, however, have no significant changes. With the strain close to the point of the breaking, we observe the formation of a one-atom thick necklace in Ni nanowire. The strain rates have no significant effect on the deformation mechanism, but have some influence on the yield stress, the elastic limit, and the fracture strain of the nanowire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an accurate formula for calculating the thermal residual stress field in a particle-reinforced composite are presented. Numerical examples are given to show r-variations of the thermal residual stresses. The increase in fracture toughness of matrix predicted by the thermal residual stress field is compared well with the experimentally measured increase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At high temperature rise rate, the mechanical properties of 10 # steel were determined experimentally in a very wide range of temperature and strain rates. A new constitutive relationship was put forward, which can fit with the experimental results and describe various phenomena observed in our experiments. Meanwhile, some interesting characteristics about the temperature rise rate, strain and strain rate hardening and thermal softening are also shown in this paper. Finally, the reliability of the constitutive law and the correctness of the constitutive parameters were verified by comparing the calculation results with the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the real-time deformation fields are observed in two different kinds of hole-excavated dog-bone samples loaded by an SHTB, including single hole sample and dual holes sample with the aperture size of 0.8mm. The testing system consists of a high-speed camera, a He-Ne laser, a frame grabber and a synchronization device with the controlling accuracy of I microsecond. Both the single hole expanding process and the interaction of the two holes are recorded with the time interval of 10 mu s. The observed images on the sample surface are analyzed by newly developed software based on digital correlation theory and a modified image processing method. The 2-D displacement fields in plane are obtained with a resolution of 50 mu m and an accuracy of 0.5 mu m. Experimental results obtained in this paper are proofed, by compared with FEM numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural relaxation through isothermal annealing at tempertature below glass transition is conducted on Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vitreloy-4) bulk metallic glass. Defect concentration is correlated with the annealing time t according to differential scanning calorimetry thermalgrams. The effects of structural relaxation on mechanical properties and deformation behaviour are investigated by using instrumented nanoindentation. It is found that as-cast alloy exhibits pronounced serration flow during the loading process of nanoindentation, and the size and number of serrations decrease with the annealing time. The change of the deformation behaviour with structural relaxation is explained using a free volume model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaotic phenomena in the wake of thermal convection flow fields above a heating flat plate were investigated experimentally. A newly developed electron beam fluorescence technique (EBF) was used to simultaneously measure density fluctuation at 7 points in a cross section above the plate. Correlation dimensions, intermittence coefficients, Fourier spectrum have been obtained for different Grashof numbers. Spatial distribution of correlation dimensions are presented. The experimental result shows that there is a certain relationship between the density fluctuation and the Gr number. And time-spacial characteristic of chaos evolution is also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation twinning near a crack tip is observed in b.c.c. metal Mo based on molecular dynamics simulation at temperature T = 50 K and loading rate (K) over dot(II) = 0.0706 MPa m(1/2)/ps. The defor mation twinning is closely controlled by both the crystal geometry orientation and the stress distribution. The width of the deformation twin band is affected by the distance between the upper and lower crack surfaces. The twin plane and twin direction are (<1(1)over bar>2) and [(1) over bar 11], respectively. The initial crack extension occurs in the deformation twin region near the crack tip. The simulation shows that the extension direction of the crack is changed as the crack propagates over the twinning boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defects induced by plastic deformation in electrodeposited, fully dense nanocrystalline (nc) Ni with an average grain size of 25 nm have been characterized by means of high resolution transmission electron microscopy. The nc Ni was deformed under uniaxial tension at liquid-nitrogen temperature. Trapped full dislocations were observed in the grain interior and near the grain boundaries. In particular, these dislocations preferred to exist in the form of dipoles. Deformation twinning was confirmed in nc grains and the most proficient mechanism is the heterogeneous nucleation via emission of partial dislocations from the grain boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dislocation models with considering the mismatch of elastic modulus between matrix and reinforcing particles are used to determine the effective strain gradient \ita for particle reinforced metal matrix composites (MMCp) in the present research. Based on Taylor relation and the kinetics of dislocation multiplication, glide and annihilation, a strain gradient dependent constitutive equation is developed. By using this strain gradient-dependent constitutive equation, size-dependent deformation strengthening behavior is characterized. The results demonstrate that the smaller the particle size, the more excellent in the reinforcing effect. Some comparisons with the available experimental results demonstrate that the present approach is satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

应用有限元方法对层流等离子体射流不锈钢表面重熔工艺中的瞬态热物理现象进行了数值模拟研究.针对不同加热距离,确定了材料熔化和凝固过程中的瞬态温度场、温度梯度和凝固率的时间和空间分布特征.通过引入等效温度面积密度概念,研究了不锈钢重熔热处理的适合条件.结果表明,9~13mm的范围是较为适宜的加热距离,该结果与试验观察基本符合.