113 resultados para Supersonic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A "swallowtail" cavity for the supersonic combustor was proposed to serve as an efficient flame holder for scramjets by enhancing the mass exchange between the cavity and the main flow. A numerical study on the "swallowtail" cavity was conducted by solving the three-dimensional Reynolds-averaged Navier-Stokes equations implemented with a k-epsilon turbulence model in a multi-block mesh. Turbulence model and numerical algorithms were validated first, and then test cases were calculated to investigate into the mechanism of cavity flows. Numerical results demonstrated that the certain mass in the supersonic main flow was sucked into the cavity and moved spirally toward the combustor walls. After that, the flow went out of the cavity at its lateral end, and finally was efficiently mixed with the main flow. The comparison between the "swallowtail" cavity and the conventional one showed that the mass exchanged between the cavity and the main flow was enhanced by the lateral flow that was induced due to the pressure gradient inside the cavity and was driven by the three-dimensional vortex ring generated from the "swallowtail" cavity structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach which combines direct numerical simulation (DNS) with the Lighthill acoustic analogy theory is used to study the potential noise sources during the transition process of a Mach 2.25 flat plate boundary layer. The quadrupole sound sources due to the flow fluctuations and the dipole sound sources due to the fluctuating surface stress are obtained. Numerical results suggest that formation of the high shear layers leads to a dramatic amplification of amplitude of the fluctuating quadrupole sound sources. Compared with the quadrupole sound source, the energy of dipole sound source is concentrated in the relatively low frequency range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an experimental study on the oscillation flow characteristics of submerged supersonic gas jets issued from Laval nozzles. The flow pattern during the jet development and the jet expansion feedback phenomenon are studied using a high-speed camera and a pressure measurement system. The experimental results indicate that along the downstream distance, the jet has three flow regimes: (1) momentum jet; (2) buoyant jet; (3) plume. In the region near the nozzle exit a so-called bulge phenomenon is found. Bulging of the jet occurs many times before the more violent jet expansion feedback occurs. During the feedback process, the jet diameter can become several times that of the original one depending on the jet Mach number. The frequencies of the jet bulging and the jet expansion feedback are measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full-and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5-10 Hz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct numerical simulation of the shock/turbulent boundary layer interaction flow in a supersonic 24-degree compression ramp is conducted with the free stream Mach number 2.9. The blow-and-suction disturbance in the upstream wall boundary is used to trigger the transition. Both the mean wall pressure and the velocity profiles agree with those of the experimental data, which validates the simulation. The turbulent kinetic energy budget in the separation region is analyzed. Results show that the turbulent production term increases fast in the separation region, while the turbulent dissipation term reaches its peak in the near-wall region. The turbulent transport term contributes to the balance of the turbulent conduction and turbulent dissipation. Based on the analysis of instantaneous pressure in the downstream region of the mean shock and that in the separation bubble, the authors suggest that the low frequency oscillation of the shock is not caused by the upstream turbulent disturbance, but rather the instability of separation bubble.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supersonic model combustors using two-stage injections of supercritical kerosene were experimentally investigated in both Mach 2.5 and 3.0 model combustors with stagnation temperatures of approximately 1,750 K. Supercritical kerosene of approximately 760 K was prepared and injected in the overall equivalence ratio range of 0.5-1.46. Two pairs of integrated injector/flameholder cavity modules in tandem were used to facilitate fuel-air mixing and stable combustion. For single-stage fuel injection at an upstream location, it was found that the boundary layer separation could propagate into the isolator with increasing fuel equivalence ratio due to excessive local heat release, which in turns changed the entry airflow conditions. Moving the fuel injection to a further downstream location could alleviate the problem, while it would result in a decrease in combustion efficiency due to shorter fuel residence time. With two-stage fuel injections the overall combustor performance was shown to be improved and kerosene injections at fuel rich conditions could be reached without the upstream propagation of the boundary layer separation into the isolator. Furthermore, effects of the entry Mach number and pilot hydrogen on combustion performance were also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By analyzing the formation mechanism of a supersonic gas jet, a set of equations which describe the atomic beam properties were established. The influence of initial temperature, initial pressure, background gas pressure and pumping speed was discussed in detail. A simulation program was developed based on the equations, and the results under different initial conditions were obtained. The results are in good agreement with the experimental data, and suggest that, in order to get much smaller transverse momentum in collision experiments, it is necessary to lower the initial temperature and the initial pressure of the supersonic gas jet, together with increasing the pumping speed. These results are very instructive for construction of a new generation of cold supersonic gas jets.