55 resultados para Subwavelength Structures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

More and more piezoelectric materials and structures have been used for structure control in aviation and aerospace industry. More efficient and convenient computation method for large complex structure with piezoelectric actuation devices is required. A load simulation method of piezoelectric actuation is presented in this paper. By this method, the freedom degree of finite element simulation is significantly reduced, the difficulty in defining in-plane voltage for multi-layers piezoelectric composite is overcome and the transfer computation between material main direction and the element main direction is simplified. The concept of simulation load is comprehensible and suitable for engineers of structure strength in shape and vibration control, thereby is valuable for promoting the application of piezoelectric material and structures in practical aviation and aerospace fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep-subwavelength gratings with periodicities of 170, 120, and 70 nm can be observed on highly oriented pyrolytic graphite irradiated by a femtosecond (fs) laser at 800 nm. Under picosecond laser irradiation, such gratings likewise can be produced. Interestingly, the 170-nm grating is also observed on single-crystal diamond irradiated by the 800-nm fs laser. In our opinion, the optical properties of the high-excited state of material surface play a key role for the formation of the deep-subwavelength gratings. The numerical simulations of the graphite deep-subwavelength grating at normal and high-excited states confirm that in the groove the light intensity can be extraordinarily enhanced via cavity-mode excitation in the condition of transverse-magnetic wave irradiation with near-ablation-threshold fluences. This field enhancement of polarization sensitiveness in deep-subwavelength apertures acts as an important feedback mechanism for the growth and polarization dependence of the deep-subwavelength gratings. In addition, we suggest that surface plasmons are responsible for the formation of seed deep-subwavelength apertures with a particular periodicity and the initial polarization dependence. Finally, we propose that the nanoscale Coulomb explosion occurring in the groove is responsible for the ultrafast nonthermal ablation mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A uniform submicron periodic square structure was fabricated on the surface of ZnO by a technique of two linearly polarized femtosecond laser beams with orthogonal polarizations ablating material alternately. The formed two-dimensional ordering submicron structure consists of close-packed submicron squares with a spacial periodicity of 290 nm, which arises from the intercrossing of two orthogonal submicron ripple structures induced by the two beams respectively. The result demonstrates a noninterference effect of two-beam ablation based on the alternate technique, which should come from the polarization-dependent enhancement of the subwavelength ripple structure and the large interval of two alternate pulses. This two-beam alternate ablation technique is expected to open up prospects for the submicron fabrication of wide-bandgap materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to previous two-dimensional coated photonic crystals, in this paper we propose a left-handed one that is made of dielectric tubes arranged in a close-packed hexagonal lattice. Without metallic cores, this structure is low-loss and convenient to fabricate. Negative refraction and its resulting focusing are investigated by dispersion characteristic analysis and numerical simulation of the field pattern. With proper modification at the interface, the image is improved. With better isotropy than that with noncircular rods, planoconcave lenses made by dielectric tubes focus a Gaussian beam exactly at R//n - 1/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As distinct from coated photonic crystals, in this paper we propose a novel one that is made of dielectric tubes arranged in a close-packet square lattice. Without metallic cores, this structure is low-loss and convenient to fabricate. A left-handed frequency region is found in the second band by dispersion characteristic analysis. Without inactive modes for the transverse electric mode, negative refraction and subwavelength imaging are demonstrated by the finite-difference time-domain simulations with two symmetrical interfaces, i.e. Gamma X and Gamma M.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the basic properties of subwavelength-diameter hollow optical fiber with exact solutions of Maxwell's equations. The characteristics of modal field and waveguide dispersion have been studied. It shows that the subwavelength-diameter hollow optical fibers have interesting properties, such as enhanced evanescent field, local enhanced intensity in the hollow core and large waveguide dispersion that are very promising for many miniaturized high performance and novel photonic devices. (C) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fields in subwavelength-diameter terahertz hollow optical fiber (STHOF) can be intensified by large discontinuity of the electric field at high index contrast interfaces. The influences of fiber geometry and refractive index of the dielectric region on the fiber characteristics, such as power distribution, enhancement factor, have been discussed in detail. By appropriate design, the intensity in the central region of STHOF may be enhanced by a factor of greater than 1.5 compared with subwavelength-diameter terahertz fiber without the central hole and the loss can be reduced. For its compact structure and simple fabrication process, the fiber may be very useful in many miniaturized high performance and novel terahertz photonic devices. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the Fresnel-Kirchkoff diffraction theory, we build up a Gaussian diffraction model of metal-oxide-type super-resolution near field structure (super-RENS), which can describe far field optical properties. The spectral contrast induced by refractive index and the structural changes in AgOx, PtOx and PdOx thin films, which are the key functional layers in super-RENS, are studied by using this model. Comparison results indicate that the spectral contrast intensively on laser-induced distribution and change of the refractive index in the metal-oxide films. The readout mechanism of the metal-oxide-type super-RENS optical disc is further clarified. This Gaussian diffraction model can be used as a simple and effective method for choosing proper active materials in super-RENS.