46 resultados para Strata-support
Resumo:
Forage selection plays a prominent role in the process of returning cultivated lands back into grasslands. The conventional method of selecting forage species can only provide attempts for problem-solving without considering the relationships among the decision factors globally. Therefore, this study is dedicated to developing a decision support system to help farmers correctly select suitable forage species for the target sites. After collecting data through a field study, we developed this decision support system. It consists of three steps: (1) the analytic hierarchy process (AHP), (2) weights determination, and (3) decision making. In the first step, six factors influencing forage growth were selected by reviewing the related references and by interviewing experts. Then a fuzzy matrix was devised to determine the weight of each factor in the second step. Finally, a gradual alternative decision support system was created to help farmers choose suitable forage species for their lands in the third step. The results showed that the AHP and fuzzy logic are useful for forage selection decision making, and the proposed system can provide accurate results in a certain area (Gansu Province) of China.
Resumo:
This paper is an important part of the national "863" topic :"Reservoir dynamic model, the development environment and the forecast of remaining oil". In this paper, multi-theory, method and technology are synthesized, and sufficiently use the computer method. We use unifies of qualitative and quota, unifies of macroscopic and microscopic, unifies of dynamic and quiescent description of reservoir, unifies of comprehensive research about reservoir and physical mathematical simulation, unifies of three-dimensional and four-dimensional description of reservoir to research the reservoir of channel sand in Gudao oilfield. and we do some research about the last 10 years of the more than 30 year high pressure water injection and polymer water flooding development, dynamic changes and geologic hazard of reservoir fluid field. It discloses the distribution, genesis and controlling factors. The main innovation achievement and the understanding are: we built-up the framework of the strata and structure, and found genetic type, spatial distribution and aeolotropism of the upper Guantao member. We form the macroscopic and microscopic reservoir model of dynamic evolution, disclose the character, distribution of the macroscopic and microscopic parameter,and the relationship with remaining oil. Next we built-up the model about hydrosialite, and find the styles, group of styles, formation mechanism and controlling factors of the reservoir, disclose the affection of the hydrosialite to remaining oil, pollution of the production environment of oilfield and geologic hazard. The geologic hazards are classified to 8 styles first time, and we disclose the character, distribution law, formation mechanism and controlling factors of the geologic hazard. We built-up the model of the distribution of remaining oil in different periods of Gudao oilfield, and disclose the macroscopic and microscopic formation mechanism of remaining oil in different periods, forecast the distribution of the mobile remaining oil, and find that the main cause of the dynamic evolution of all the sub-models of reservoir fluid field is the geologic process of the reservoir development hydrodynamic force. We develop the reservoir fluid field, research of environment disaster and the description about the support theory, method and technology. The use of this theory in Gudao oilfield has obtained very good economic efficiency, and deepened and develops development geology about the continental facies fault-trough basin, and theory of geologic hazard.
Resumo:
Nansha Islands as sacred territory of China, containing abundant natural resources is the important area of sustaining development of Chinese people. Safeguarding and developing Nansha Islands has become one important part to develop ocean resource of China in 21 century. Engineering geological problems will be faced inevitably in the processes of engineering construction. Coral reef is a new kind of soil and rock and has special engineering characteristics. This doctoral dissertation researches deeply and systematically the regional engineering geology environmental properties and quality, engineering geological characteristics of coral reefs sand on the basis of synthetic analysis of hydrology, climate, geology, geomorphology and engineering field exploration information and combining the experimental data. 1. Put forward the division program of engineering geological environment of Nansha Islands according to the data of hydrology, geology and sediments, and also deeply study the properties of each division. Evaluate the quality of engineering geological environment by fuzzy mathematics and draw the evaluation map of quality of engineering geological environment. The research work provides background support of engineering geological environment to program of resource development in Nansha Islands. 2. Structures of coral reefs have been analyzed. The model of engineering geological zone has been proposed on the basis of geomorphologic zone and combining the strata and ocean dynamic environment. The engineering construction appropriation of each zone is praised. 3. The physical and mechanical properties of coral sands are researched. The results show that coral sands have high void ratio, non-regular shape, easy grain crushing and large compressibility. Shear-expansion takes place only at very low confining pressure and shear-contraction of volumetric strain occurs at higher confining pressure. Internal friction angle decreases with the increasing of confining pressure. The grain crushing property is the main factor influencing the mechanical characteristics. 4. A revised E-ν constitutive model is proposed which considers the change of internal friction angle with confining pressure, and parameter values are also determined. 5. The stability of Yongshu Reef by is analysed for the purpose of serving engineering struction. The process and mechanism of deformation and failure of foundation and slope is analyzed by finite-element method.
Resumo:
Guided by geological theories, the author analyzed factual informations and applied advanced technologies including logging reinterpretation, predicting of fractal-based fracture network system and stochastic modeling to the low permeable sandstone reservoirs in Shengli oilfield. A new technology suitable for precious geological research and 3D heterogeneity modeling was formed through studies of strata precious correlation, relation between tectonic evolution and fractural distribution, the control and modification of reservoirs diagenesis, logging interpretation mathematical model, reservoir heterogeneity, and so on. The main research achievements are as follows: (1) Proposed four categories of low permeable reservoirs, which were preferable, general, unusual and super low permeable reservoir, respectively; (2) Discussed ten geological features of the low permeable reservoirs in Shengli area; (3) Classified turbidite fan of Es_3 member of the Area 3 in Bonan oilfield into nine types of lithological facies, and established the facies sequences and patterns; (4) Recognized that the main diagenesis were compaction, cementation and dissolution, among which the percent compaction was up to 50%~90%; (5) Divided the pore space in ES_3 member reservoir into secondary pores with dissolved carbonate cement and residual intergranular pores strongly compacted and cemented; (6) Established logging interpretation mathematical model guided by facies- control modeling theory; (7) Predicted the fracture distribution in barriers using fractal method; (8) Constructed reservoir structural model by deterministic method and the 3D model of reservoir parameters by stochastic method; (9) Applied permeability magnitudes and directions to describe the fractures' effect on fluid flow, and presented four different fractural configurations and their influence on permeability; (10) Developed 3D modeling technology for the low permeable sandstone reservoirs. The research provided reliable geological foundation for the establishment and modification of development plans in low permeable sandstone reservoirs, improved the development effect and produced more reserves, which provided technical support for the stable and sustained development of Shengli Oilfield.
Resumo:
A novel graphitic-nanofilament-(GNF-) supported Ru-Ba catalyst is prepared and used in ammonia synthesis reaction. The Ru-Ba/GNFs catalyst shows remarkably high activity and stability for ammonia synthesis, which can be attributed to high purity and graphitization of GNFs with unique structure. TEM micrographs of the Ru-Ba/GNFs catalysts show that Ru metal particles uniformly disperse on the outer wall of GNFs, and the particles become bigger than that before ammonia synthesis reaction after 50 h of operation at 500degreesC and 7.0 MPa, probably due to the Ru crystals covered by promoter and support materials and/or sintering of Ru crystals. (C) 2002 Elsevier Science (USA).
Dependence of presence of defect in g-Al2O3 toplayer on structure of support 底膜结构对g-Al2O3顶层缺陷存在的决定作用
Resumo:
The selective oxidation of ethylene to acetic acid was investigated on Pd-acid/support catalyst system. The catalytic activity is influenced strongly by the acidity of the catalyst. The stronger the catalyst acidity the higher the catalytic activity. The nature of the support also influences the activity of the catalyst substantially. The catalyst has highest activity when it exhibits highest acidity on silica.