40 resultados para Stock recovery
Resumo:
In this study, binodal curves and tie line data of [Amim]Cl + salt (K3PO4, K2HPO4, K2CO3) + water aqueous biphasic systems (ABS) were measured and correlated satisfactorily with the Merchuk equation and Othmer-Tobias and Bancroft equations, respectively. [Amim]Cl could be recovered from aqueous solutions using the ABS, and the recovery efficiency could reach 96.80%. The recovery efficiency was influenced by the concentrations of the salts and their Homeister series: K3PO4 > K2HPO4 > K2CO3. Our method provides a new and effective route for the recovery of hydrophilic IL using [Amim]Cl + salt + water ABS from aqueous solutions.
Resumo:
BACKGROUND: Ionic liquids (ILs) as environmentally benign solvents have been widely studied in the application of solvent extraction. However, few applications have been successfully industrialized because of the difficult stripping of metal ions or the loss of components of the ILs. More work needs to be done to investigate the extraction behaviour of IL-based extraction systems. In this work, the extraction behaviour of Ce(IV), Th(IV) and some trivalent rare earth (RE) nitrates by di(2-ethylhexyl) 2-ethylhexylphosphonate (DEHEHP) in the IL, 1-methyl-3-octylimidazolium hexafluorophosphate ([C(8)mim]PF6), was investigated and compared with that in the n-heptane system. In particular, the effect of F(I) on the extraction mechanism for Ce(IV) and its separation from Th(IV) was investigated. Otherwise, the recovery efficiency of Ce(IV) and F(I) from a practical bastnasite leach liquor was examined using IL based extraction.
Resumo:
Solvent extraction of Ce(IV), Th(IV) with Cyanex 923 in n-hexane from sulphuric acid medium was studied with the dependence of the extraction on acidity and temperature being investigated. The Ce(IV) and Th(IV) extraction mechanism was proposed by slope analysis and the IR spectra of purified Cyanex 923 saturated with Ce(IV) were employed to determine the composition of the Ce(IV) complex. The equilibrium constant and thermodynamic functions of Th(IV) extraction were calculated and the characteristics of the stripping of Ce(IV), Th(IV) from the loaded organic phase were studied. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The aim of this study was to test the protective roles of superoxide dismutases (SODs), guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) against oxidative damage and their activities in different phases of the dry down process in Reaumuria soongorica (Pall.) Maxim. leaves. Drought stress was imposed during 100 consecutive days and rewatering after 16, 72, and 100 days. The concentration of hydrogen peroxide (H2O2), malondialdehyde, and SODs activities were elevated significantly with progressing drought stress. POD and CAT activities increased markedly in the early phase of drought and decreased significantly with further drought stress continuation, and POD activity was unable to recover after rewatering. Ascorbate, reduced glutathione, APX, and GR activities declined in the initial stages of drought process, elevated significantly with further increasing water deficit progression and recovered after rewatering. These results indicate that: (1) iron SODs-removing superoxide anion is very effective during the whole drought stress; (2) CAT scavenges H2O2 in the early phase of drought and enzymes of ascorbate-glutathione cycle scavenge H2O2 in further increasing drought stress; and (3) POD does not contribute to protect against oxidative damage caused by H2O2 under drought stress.
Resumo:
C-phycocyanin was purified on a large scale by a combination of expanded bed adsorption, anion-exchange chromatography and hydroxyapatite chromatography from inferior Spirulina platensis that cannot be used for human consumption. First, phycobiliproteins were extracted by a simple, scaleable method and then were recovered by Phenyl-Sepharose chromatography in an expanded bed column. The purity (the A(620)/A(280) ratio) of C-phycocyanin isolated with STREAMLINE (TM) Column was up to 2.87, and the yield was as high as 31 mg/g of dried S. platensis. After the first step, we used conventional anion-exchange chromatography for the purification steps, with a yield of 7.7 mg/g of dried S. platensis at a purity greater than 3.2 and with an A(620)/A(650) index higher than 5.0. The fractions from anion-exchange chromatography with a level of purity that did not conform to the above standard were subjected to hydroxyapatite chromatography, with a C-PC yield of 4.45 mg/g of dried S. platensis with a purity greater than 3.2. The protein from both purification methods showed one absolute absorption peak at 620 nm and a fluorescence maximum at 650 nm, which is consistent with the typical spectrum of C-phycocyanin. SDS-PAGE gave two bands corresponding to 21 and 18 kDa. In-gel digestion and LC-ESI-MS showed that the protein is C-phycocyanin. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The recovery and fate of three species of dinoflagellates, Alexandrium tamarense, Cochlodinium polykrikoides and Scrippsiella trochoidea, after having been sedimented by yellow clay, were investigated in the laboratory. The effect of burying period in yellow clay pellet and mixing on the recovery of settled algal cells were studied. The morphological changes of algal cells in yellow clay pellet were also tracked. Results showed that there was almost no recovery for A. tamarense and C. polykrikoides, and the cells decomposed after 2-3 days after visible changes in morphology and chloroplasts. There was some recovery for S. trochoidea. Moreover, S. trochoidea cysts were formed in clay pellet during the period of about 14 days, with the highest abundance of 87 000 cysts g(-1) clay and the incidence of cyst formation of 6.5%, which was considered as a potential threat for the further occurrence of algal blooms. S. trochoidea cysts were isolated from yellow clay and incubated to test their viability, and a germination ratio of more than 30% was obtained after incubation for 1 month. These results showed the species specificity of the mitigation effect of yellow clay. It is suggested that cautions be taken for some harmful species and thorough risk assessments be conducted before using this mitigation strategy in the field.
Resumo:
Three F-1 families of the bay scallop, Argopecten irradians, were produced from one, two and 10 individuals. The genetic changes in these populations, which suffered recent and different levels of bottleneck, were analysed using amplified fragment length polymorphism (AFLP) techniques. In the parental stock, a total of 330 bands were detected using seven AFLP primer pairs, and 70% of the loci were polymorphic. All F-1 groups had a significantly lower proportion of polymorphic loci when compared with the initial stock, and loss of the rare loci and reduction in heterozygosity both occurred. The progeny of the larger population (i.e., N=10) exhibited a lesser amount of genetic differentiation compared with the progeny from N=2, which showed lesser differentiation than progeny from N=1. The effective population sizes (N-e) in N=1, 2 and 10 were estimated as 1.50, 1.61 and 2.49. Based on regression analysis, we recommend that at least 340 individuals be used in hatchery populations to maintain genetic variation.
Resumo:
Studies were carried out to optimize the conditions for the recovery of protein. The results showed that pH of 6.00 for wastewater, the dosage of 1% chitosan solution in 1% acetic acid aqueous solution of 2.0 ml for 50 ml wastewater and 1% FeCl3 aqueous solution of 2 ml for 50 ml wastewater, the flocculation time of 4.0 h were the optimal conditions for the recovery of protein. The obtained protein sediment contained abundant amino acids, especially isoleucine, methione and lysine that are absent in other protein resource. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work describes the preparation of a chelating resin from chemically modified chitosan. The resin was synthesized by using O-carboxymethylated chitosan to cross-link a polymeric Schiffs base of thiourea/glutaraldehyde and characterized by IR. Batch method was applied for testing the resin's adsorption behavior. Adsorption experiments showed the resin had good adsorption capacity and high selectivity for Ag(I) in aqueous solution. The maximum uptake of Ag(I) exhibited was 3.77 mmol/g, at pH 4.0. The results also indicated that the adsorption process was exothermic and fit well with the pseudosecond-order kinetic model. Ag(I) desorption could reach 99.23% using 0.5 M thiourea-2.0 M HCl solution. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The chlorophyll fluorescence in soybean leaves was observed by a portable fluorometer CF-1000 under field conditions. On clear days, F-0 increased while F, and F-v/F-m decreased gradually in the morning. At midday F-O reached its maximum while F-v and F-v/F-m reached their minimum. The reverse changes occurred in the afternoon. At dusk these parameters could return to levels near those at dawn. Following exposure to a strong sunlight for more than 3 h, the dark-recovery process displayed three phases: (1) slow increases in F-0, F-v and F-v/F-m within the first hour; (2) a faster decrease in F-0 and faster increases in F-v and F-v/F-m within subsequent two hours; (3) a slow decrease in F-0 and slow increases in F-v and F-v/F-m within the fourth hour. In comparison with darkness, weak irradiance had no stimulating effect on the recovery from photoinhibition. Hence the photoinhibition in soybean leaves is mainly the reflection of reversible inactivation of some photosystem 2 reaction centres, but not the result of D1 protein loss.