123 resultados para Space arrangement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time to our knowledge, in a high-energy laser facility with an output energy of 454.37 J, by using a temporal-space-transforming pulse-shaping system with our own design of a knife-edge apparatus, we obtained a quasi-square laser pulse. (c) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

设计高功率激光装置靶场终端光学组件(FOA)时考虑的重要因素是鬼像对光学元件的破坏。由于神光Ⅱ升级装置(SG-Ⅱ-U)的输出能量高、靶场空间小、鬼像分布情况复杂,导致了终端光学组件的设计难度很高。用自主研发的鬼像控制设计软件对神光Ⅱ升级装置靶场终端光学组件排布进行设计,给出了进行鬼像控制设计时需考虑的设计因素,并对比研究了两种靶场终端光学组件设计方案的优缺点,最后结合神光Ⅱ升级装置的特点,优化设计出神光Ⅱ升级装置靶场终端光学组件的最终排布方案。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experiment result of Nd:YVO4 laser pumped by laser diode that was amplified by double-cladding Yb3+ fiber is reported. Stable mode-locking pulses are obtained at repetition rate of 320 MHz and the output power is 15 mW. When laser power is amplified by Yb3+- doped double-cladding fiber amplifier, its power can get to 600 mW. Based on these, experiment of double-frequency is carried out, and green laser with power of 4 mW is obtained. (c) 2007 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on space-selective co-precipitation of silver and gold nanoparticles in Ag+, Au3+ co-doped silicate glasses by irradiation of femtosecond laser pulses and subsequent annealing at high temperatures. The color of the irradiated area in the glass sample changed from yellow to red with the increase of the annealing temperature. The effects of average laser power and annealing temperature on precipitation of the nanoparticles were investigated. A reasonable mechanism was proposed to explain the observed phenomena. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Au colloids were prepared by irradiation with a Nd:YAG laser. Au nanoparticles were characterized by absorption spectra, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. It is found that the wavelength of the laser has no effect on the size but the number of the Au nanoparticles. By irradiating a transparent silica gel doped with gold ions with the focused laser in the gel and subsequent exposing in air, a space-selective pattern of letter "P" consisting of Au nanoparticles was observed inside the silica gel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The forming mechanism of the three - dimensional structures of proteins,i.e.the mechanism of protein folding,is a basic problem in molecular biology which is still unsolved unitl now. In which a core problem is whether there is the three – dimensional genetic information that decide the three - dimensional structures of proteins. However, the research on this field has mot yet been reported. Recently,we made a comparative study on the folded structures of more than 70 mature messeneger RNAs (mRNAs) and the three - dimensional structures of the proteins encoded by them,it has been found that there exist marked correspondences between their featured structures in the following aspects: 1.The number of the structural units. An RNA molecule can form a secondary structure(stem and loop structure) by the folding and the base pairing of itself. The elementary structural unit of an RNA secondary structure is hairpin(or compound hair pin).The regular structural unit in the secondary structure of a protein is # alpha # - helix or #beta# - sheet . We have found that the hairpin number in the secondary structure of each mature mRNA is equal or approximately equal to the number of the regular secondary structural unis of the encoded protein. 2 .Turning region. Turn is a main structrual element in the secondary structure of a protein, which decides the backbone orientation of a protein molecule to some extent .Our analysis shows that the nucleotide sequence segments in an mRNA which encode the turns of the corresponding protein are overall situated in the turning regions of the mRNA secondary structure such as haipin,bulge loop or multibaranch loops. 3 .The arrangement of structural elements in space. In order to understand the backbone orientation of an RNA molecule and the arangement of its structural elements in space,we have modeled the three一dimensional structure of the mRNA molecule on SGI workstation based on its secondary structure.The result shows that the spatial arrangement of most of the nucleotide sequence segments encoding the structural elements of a protein is consistent with that of these stretural exements in the protein. For instance,the nucleotide sequences corresponding to each pleated sheet of a # beta # - sheet structure are close to each other in the mRNA secondary stucture and in the three - dimensional structure,although some of the nucleotide segments are far apart from each other in the one - dimensional sequence. For another instance,the two triplet codons of cysteines which form a disulphide bridge geneal1y are very close to each other in the mRNA folded structure. In addition,we also analyzed the locations of the codons proline - coding and the distrbution of the nucleotide sequences #alpha# - helix - coding in the folded structures of mRNAs . Some distribution laws have been found. All of these results suggest that the transfer of the genetic information from mRNA to protein not only is one – dimensional but also is three - dime ns ional. That is,there exists the genetic information that decide the three - dimensional structures of proteins. To a certain extent,we could say that the mRNA folding detemines the protein folding. Based on these results,it would be possible to predict the three - dimensional structures of proteins from the primary,secondary and tertiary structures of the m RNAs at a higher accuracy.And more important is that a new clue has been provided to uncover the“spatial coding" of the genetic information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemokine receptor CCR5 is the receptor for several chemokines and major coreceptor for R5 human immunodeficiency virus type-1 strains entry into cell. Three-dimensional models of CCR5 were built by using homology modeling approach and 1 ns molecular dynamics (MD) simulation, because studies of site-directed mutagenesis and chimeric receptors have indicated that the N-terminus (Nt) and extracellular loops (ECLs) of CCR5 are important for ligands binding and viral fusion and entry, special attention was focused on disulfide bond function, conformational flexibility, hydrogen bonding, electrostatic interactions, and solvent-accessible surface area of Nt and ECLs of this protein part. We found that the extracellular segments of CCR5 formed a well-packet globular domain with complex interactions occurred between them in a majority of time of MID simulation, but Nt region could protrude from this domain sometimes. The disulfide bond Cys20-Cys269 is essential in controlling specific orientation of Nt region and maintaining conformational integrity of extracellular domain. RMS comparison analysis between conformers revealed the ECL1 of CCR5 stays relative rigid, whereas the ECL2 and Nt are rather flexible. Solvent-accessible surface area calculations indicated that the charged residues within Nt and ECL2 are often exposed to solvent. Integrating these results with available experimental data, a two-step gp120-CCR5 binding mechanism was proposed. The dynamic interaction of CCR5 extracellular domain with gp120 was emphasized. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

调查了人工湿地水生植物根区理化特性,根系扩展的深度和位置,微生物和酶的分布状况;比较了不同深度人工湿地污水净化效果;探讨了人工湿地污水处理系统最佳净化空间位点。通过对香蒲、灯心草人工湿地的研究,发现植物的根系主要分布在基质上层25cm区域内,在5到10cm区域内,微生物数量最多,25cm区域次之,35cm以下较少。系统表层磷酸酶,葡聚糖脱水酶和蛋白酶的活性较20cm区域内各酶活性强。对于废水的净化而言,系统20cm和60cm处的净化效果差别很小。结果表明,人工湿地废水处理系统上部区域为较佳净化空间。