108 resultados para Short Circuit, Pulse Gas Metal Arc Welding, Aluminium
Resumo:
This paper describes the effect of electron irradiation and thermal annealing on LPE AlGaAs/GaAs heterojunction solar cells with various p/n junction depths. The electron irradiation experiments were performed with energy of 3 MeV, fluences ranging from 1 x 10(14) to 5 x 10(15) e/cm(2). The results obtained demonstrate that the irradiation-induced degradation of performances of the cells is mainly in the short circuit current and could be mostly recovered by annealing at 260 degrees C for 30 min. Four electron traps, E-c - 0.24 eV, E-c - 0.41 eV, E-c - 0.51 eV, E-c - 0.59 eV, were found by DLTS analysis, only two shallow levels of which could be removed by the annealing. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A thin oriented bacteriorhodopsin (bR) him is deposited on a stainless steel slide by use of the electrophoretic sedimentation method. A junction is made with electrolyte gels having a counterelectrode to construct a bR-based photoelectric detector;. The photoelectric response signal to a 10 ns laser pulse is measured. A theory on the photoelectric kinetics of bR is developed based on the concept of the charge displacement current and the bR photocycle rate equations. Comparison between the theoretical and experimental results proves that the bR photoelectric response to a short laser pulse is a multi-exponential process. The decay time constants and amplitudes of each, exponential component are obtained by data fitting.
Resumo:
We fabricated the interdiffused organic photovoltaic devices, which composed of poly (2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylenevinylene) (MEH-PPV) and buckminsterfullerene (C-60), by annealing treatment. After annealing, C60 diffused into the MEH-PPV layer, in consequence, MEH-PPV/C-60 interfacial area was increased and their interface became closer proximity. The results lead to reduce reverse-bias saturation current (J(s)), and increase the open-circuit voltage (V-OC) and the short-circuit current (J(SC)).
Resumo:
Hexadecafluorophthalocyaninatocopper (F16CuPc)/zine phthalocyanine (ZnPc) heterojunction layer has been used as buffer layer in organic photovoltaic (OPV) cells based on ZnPc and C-60. The F16CuPc/ZnPc heterojunction with highly conductive property decreased the contact resistance between the indium-tin-oxide anode and the organic layer. As a result, the short-circuit current density and fill factor were increased, and the power-conversion efficiency was improved by over 60%. Therefore, the method provides an effective path to improve the performance of OPV cells.
Resumo:
The authors report enhanced poly(3-hexylthiophene) (P3HT):methanofullerene (PCBM) bulk-heterojunction photovoltaic cells via 1,2-dichlorobenzene (DCB) vapor treatment and thermal annealing. DCB vapor treatment can induce P3HT self-organizing into ordered structure leading to enhanced absorption and high hole mobility. Further annealing the device at a high temperature, PCBM molecules begin to diffuse into aggregates and together with the ordered P3HT phase form bicontinuous pathways in the entire layer for efficient charge separation and transport. Compared to the control device that is merely annealed, optical absorption, short-circuit current, and power conversion efficiency are increased for the DCB vapor-treated cell.
Resumo:
Organic photovoltaic cells with a strong absorption spectrum in the near infrared region were fabricated with the structure of indium tin oxide (ITO)/zinc phthalocynine (ZnPc)/lead phthalocynine (PbPc)/C-60/Al. PbPc has a broad and strong absorption, while the organic films of PbPc/C-60 showed an additional new absorption peak at 900 nm. The absorption in the near infrared region can harvest more photons to invert into photocurrent. Moreover, the introduction of ZnPc thin layer between ITO and PbPc further improved the new absorption peak and the collection of hole carriers at the electrode ITO, which increased the power conversion efficiencies to 1.95% and short-circuit current density to 9.1 mA/cm(2) under AM 1.5 solar spectrum.
Resumo:
The cylindrical 'D'-size batteries were fabricated by polyaniline paste cathode and lithium foil anode sandwiched with microporous polypropylene separator. The electrolyte used was LiClO4 dissolved in a mixed solvent of propylene carbonate and dimethoxyethane. The results of charge/discharge curves, charge/discharge cycles, the short-circuit current, the open-circuit voltage storage and the change of discharge capacity with temperature, discharge current are reported.
Resumo:
本文介绍了高性能机器人控制器的研制情况.该系统具有较高的控制精度,可完成对机器人和多个外部轴的协调控制.为便于国内用户使用,实现了中文界面功能键驱动的汉字编程示教盒.为适应机器人生产线的需要,提供了丰富的联网功能和生产线监控诊断功能.目前该系统已用于新松公司的6kg工业机器人产品中.
Resumo:
本文研究开发了一个弧焊机器人焊接工艺专家系统.该系统实时性强、可靠性好,可以根据焊接初始条件制定合理的焊接工艺参数,实现焊接工艺的在线规划设计。
Resumo:
为了推广弧焊机器人的应用,应用VisualBASIC和C语言开发了一个弧焊机器人焊接咨询专家系统,可用来帮助弧焊机器人操作者进行焊接工艺的制定和选择。
Resumo:
Orthogonal designs are used to investigate the main factors when doing experiments in which pulse bias is superimposed on d.c. bias during cathodic are deposition of TiN. Pulse peak, duty cycle, frequency, direct voltage, are current and pressure all are investigated when coating TiN on HSS substrates. Roughness, surface micrograph, microhardness and thickness are tested. By analysis of variance, it is shown that pressure and frequency are the main factors. R-a and droplet density of the film with (d.c. + pulse) bias decrease. A simple explanation for the result is suggested.
Resumo:
Exploratory experiments of laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. The corresponding mechanisms were discussed in detail. Results showed that the laser-welded seam had non-equilibrium solidified microstructures consisting of FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and some fine and dispersed Ni3Al gamma' phase and Laves particles as well as little amount of MC short stick or particle-like carbides distributed in the interdendritic regions. The average microhardness of the welded seam was relatively uniform and lower than that of the base metal due to partial dissolution and suppression of the strengthening phase gamma' to some extent. About 88.5% tensile strength of the base metal was achieved in the welded joint because of a non-full penetration welding and the fracture mechanism was a mixture of ductility and brittleness. The existence of some Laves particles in the welded seam also facilitated the initiation and propagation of the microcracks and microvoids and hence, the detrimental effects of the tensile strength of the welded joint. The present results stimulate further investigation on this field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Experimental trials of autogenous deep penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 5.0 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser output power, welding velocity and defocusing distance on the morphology, welding depth and width as well as quality of the welded seam were investigated. Results show that full keyhole welding is not formed on both K4.18 and 42CrMo side, simultaneously, due to the relatively low output power. Partial fusion is observed on the welded seam near 42CrMo side because of the large disparity of thermal-physical and high-temperature mechanical properties of these two materials. Tile rnicrohardness of the laser-welded joint was also examined and analyzed. It is suggested that applying negative defocusing in the range of Raylei length can increase the welding depth and improve tile coupling efficiency of the laser materials interaction. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Experiments of autogenous laser full penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 3.5 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser welding velocity, flow rate of side-blow shielding gas, defocusing distance were investigated. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. Results show that high quality full penetration laser-welded joint can be obtained by optimizing the welding velocity, flow rate of shielding gas and defocusing distance. The laser-welded seam have non-equilibrium solidified microstructures consisting of gamma-FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and very small amount of super-fine dispersed Ni3Al gamma' phase and Laves particles as well as MC needle-like carbides distributed in the interdendritic regions. Although the microhardness of the laser-welded seam was lower than that of the base metal, the strength of the joint was equal to that of the base metal and the fracture mechanism showed fine ductility. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Short fatigue crack behaviour in a weld metal has been further investigated. The Schmid factor and the fractal dimension of short cracks on iso-stress specimens subjected to reversed bending have been determined and then applied to account for the distribution and orientation characteristics of short fatigue cracks. The result indicates that the orientation preference of short cracks is attributed to the large values of Schmid factor at relevant grains. The Schmid factors of most slip systems, which produced short cracks, are less than or equal to 0.4. Crack length measurements reveal that short crack path, compared to that of long crack, possesses a more stable and relatively larger value of fractal dimension. This is regarded as one of the typical features of short cracks.