160 resultados para Shear bands


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plastic deformation behaviour of Zr52.5Al10Ni10Cu15Be12.5 and Mg65Cu25Gd10 bulk metallic glasses (BMGs) is studied by using the depth-sensing nanoindentation and microindentation. The subsurface plastic deformation zone of the BMGs is investigated using the bonded interface technique. Both the BMGs exhibit the serrated flow depending on the loading rate in the loading process of indentation. Slow indentation rates promote more conspicuous serrations, and rapid indentations suppress the serrated flow. Mg-based BMG shows a much higher critical loading rate for the disappearance of the serration than that in Zr-based BMG. The significant difference in the shear band pattern in the subsurface plastic deformation zone is responsible for the different deformation behaviour between the two BMGs. Increase of the loading rate can lead to the increase of the density of shear bands. However, there is no distinct change in the character of shear bands at the loading rate of as high as 1000 nm/s.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation has been made into the plastic deformation behavior of a Monel alloy deformed at high strain rate of 10(5) s(-1) by split Hopkinson bar. The results reveal that there are some equiaxed grains with an average size of 150 nm in diameter in the center of the shear bands, suggesting that this microstructure characteristics be developed by dynamic recrystallization, arising from the deformation and the rapid temperature rise in the band. Analysis shows that the plastic strain rate and the mobile dislocation density play a key role in the new crystallized grain formation and growth. Based on grain boundary energy change and diffusion mechanism, the grain growth kinetics is developed for plastic deformation at a high strain rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Problems involving coupled multiple space and time scales offer a real challenge for conventional frameworks of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk metallic glasses, spallation resulting from stress wave, interaction between a probe tip and sample, the simulation of nanoindentation with molecular statistical thermodynamics) are provided to illustrate the three levels of trans-scale problems (problems due to various physical mechanisms at macro-level, problems due to micro-structural evolution at macro/micro-level, problems due to the coupling of atoms/molecules and a finite size body at micro/nano-level) and their formulations. Accordingly, non-equilibrium statistical mechanics, coupled trans-scale equations and simultaneous solutions, and trans-scale algorithms based on atomic/molecular interaction are suggested as the three possible modes of trans-scale mechanics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoindentation simulations on a binary metallic glass were performed under various strain rates by using molecular dynamics. The rate-dependent serrated plastic flow was clearly observed, and the spatiotemporal behavior of its underlying irreversible atomic rearrangement was probed. Our findings clearly validate that the serration is a temporally inhomogeneous characteristic of such rearrangements and not directly dependent on the resultant shear-banding spatiality. The unique spatiotemporal distribution of shear banding during nanoindentation is highlighted in terms of the potential energy landscape (PEL) theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the observations of a clear fractographic evolution from vein pattern, dimple structure, and then to periodic corrugation structure, followed by microbranching pattern, along the crack propagation direction in the dynamic fracture of a tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit.1) bulk metallic glass (BMGs) under high-velocity plate impact. A model based on fracture surface energy dissipation and void growth is proposed to characterize this fracture pattern transition. We find that once the dynamic crack propagation velocity reaches a critical fraction of Rayleigh wave speed, the crack instability occurs; hence, crack microbranching goes ahead. Furthermore, the correlation between the critical velocity of amorphous materials and their intrinsic strength such as Young's modulus is uncovered. The results may shed new insight into dynamic fracture instability for BMGs. (C) 2008 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pile-up around indenter is usually observed during instrumented indentation tests on bulk metallic glass. Neglecting the pile-up effect may lead to errors in evaluating hardness, Young's modulus, stress-strain response, etc. Finite element analysis was employed to implement numerical simulation of spherical indentation tests on bulk metallic glass. A new model was proposed to describe the pile-up effect. By using this new model, the contact radius and hardness of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass were obtained under several different indenter loads with pile-up, and the results agree well with the data generated by numerical simulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Compression, tension and high-velocity plate impact experiments were performed on a typical tough Zr41.2Ti13.8Cu10Ni12.5Be22.5 (Vit 1) bulk metallic glass (BMG) over a wide range of strain rates from similar to 10(-4) to 10(6) s(-1). Surprisingly, fine dimples and periodic corrugations on a nanoscale were also observed on dynamic mode I fracture surfaces of this tough Vit 1. Taking a broad overview of the fracture patterning of specimens, we proposed a criterion to assess whether the fracture of BMGs is essentially brittle or plastic. If the curvature radius of the crack tip is greater than the critical wavelength of meniscus instability [F. Spaepen, Acta Metall. 23 615 (1975); A.S. Argon and M. Salama, Mater. Sci. Eng. 23 219 (1976)], microscale vein patterns and nanoscale dimples appear on crack surfaces. However, in the opposite case, the local quasi-cleavage/separation through local atomic clusters with local softening in the background ahead of the crack tip dominates, producing nanoscale periodic corrugations. At the atomic cluster level, energy dissipation in fracture of BMGs is, therefore, determined by two competing elementary processes, viz. conventional shear transformation zones (STZs) and envisioned tension transformation zones (TTZs) ahead of the crack tip. Finally, the mechanism for the formation of nanoscale periodic corrugation is quantitatively discussed by applying the present energy dissipation mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zr48.5Cu46.5Al5 bulk metallic glass (BMG) composites with diameters of 3 and,4 mm were prepared through suction casting in an arc melting furnace by modulating the alloy composition around the monothetic BMG composition of the high glass forming ability. Microstructural characterization reveals that the composites contain micron-sized CuZr phase with martensite structure, as well as nano-sized Zr2Cu crystalline particles and Cu10Zr7 plate-like phase embedded in an amorphous matrix. Room temperature compression tests showed that the composites exhibited significant strain hardening and obvious plastic strain of 7.7% for 3 nun and 6.4% for 4 nun diameter samples, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quasicrystalline phase with different volume fraction were formed by isothermally annealing the as-castZr(62)Al(9.5)Ni(9.5)Cu(14)Nb(5) bulk metallic glass at 723 K for different times. The effects of quasicrystals on the deformation behavior of the materials were studied by nanoindentation and compression test. It revealed that the alloys with homogeneous amorphous structure exhibit pronounced flow serrations during the nanoindentation loading, while no obvious flow serration is observed for the sample with quasicrystals more than 10 vol.%. However, further compression tests confirm that the no-serrated flows are formed due to different reasons. For annealed samples containing quasicrystals less than 35 vol.%, continuous plastic deformation occurs due to propagation of multiple shear bands. While the disappearance of serrated flow cannot be explained by the generation of multiple shear bands for samples containing quasicrystals more than 35 vol.%, which will fracture with a totally different fracture mode, namely, dimple fracture mode under loading instead of shear fracture mode. (c) 2005 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plastic deformation behaviors of Zr52.5Al10Ni10Cu15Be12.5, Mg65Cu25Gd10 and Pd43Ni10Cu27P20 bulk metallic glasses (BMGs) are studied by using the depth-sensing nanoindentation, macroindentation and uniaxial compression. The significant difference in plastic deformation behavior cannot be correlated to the Poisson's ratio or the ratio of shear modulus to bulk modulus of the three BMGs, but can be explained by the free volume model. It is shown that the nucleation of local shear band is easy and multiple shear bands can be activated in the Zr52.5Al10Ni10Cu15Be12.5 alloy, which exhibits a distinct plastic strain during uniaxial compression and less serrated flow during nanoindentation. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

通过充氢和未充氢缺口拉伸试样和三点弯曲试样在SEM下的原位加载,研究了氢对Zr65Al7.5Ni10Cu17.5块体非晶合金形变和开裂过程的影响.结果表明,无论是否有氢,块体非晶的剪切带发展到临界尺寸,剪切裂纹就沿剪切带形核、扩展,它一旦张开就导致快速的断裂.断口边缘观察到的无特征区是剪切带,而不是剪切裂纹断口;剪切断口形貌和拉伸断口形貌没有本质区别.只有当长时间充氢才能形成氢鼓泡,如鼓泡很小或尚未形成,则氢对剪切带以及裂纹的形核、扩展没有明显影响;如存在较大的氢鼓泡,则当剪切带尚未充分发展时微裂纹就形核,导致低应力脆断.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

从溶液中聚集体的角度研究了溶液的热历史改变生长出的蛋白质晶体的数目和尺寸的内在原因.将在281和309 K下保存1 d的两组溶菌酶溶液按不同比例混合,加入沉淀剂生长晶体.随着高温溶液的比例增加,生长出的晶体数目减少,同时溶液中生长基元的尺寸增大.在5周内,采用动态光散射对281,293和309K三种温度下保存的溶菌酶溶液中聚集体的变化情况进行监测,发现溶液中均存在大小不同的两部分聚集体,称之为小聚集体与多聚体.前者的尺寸基本不随保存时间而变化,而后者尺寸随保存时间增加而减小,减小的速度与保存温度有关.多聚体的尺寸经过5周后和小聚集体基本相同.研究结果表明,处于无序聚集阶段的溶液的均一化程度和成核阶段生长基元的尺寸受到了溶液热历史的影响,并最终对晶体的数目产生影响.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The uniqThe unique lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband formation in the primary shear zone (PSZ). A coupled thermomechanical orthogonal cutting model, taking into account force, free volume and energy balance in the PSZ, is developed to quantitatively characterize lamellar chip formation. Its onset criterion is revealed through a linear perturbation analysis. Lamellar chip formation is understood as a self-sustained limit-cycle phenomenon: there is autonomous feedback in stress, free volume and temperature in the PSZ. The underlying mechanism is the symmetry breaking of free volume flow and source, rather than thermal instability. These results are fundamentally useful for machining BMGs and even for understanding the physical nature of inhomogeneous flow in BMGs.ue lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zr-based bulk metallic glass matrix composites with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.(5) were synthesized by the copper-mould suction casting and the Bridgman solidification. The composite, containing a well-developed flowery beta-Zr dendritic phase, was obtained by the Bridgman solidification with the withdrawal velocity of 0.8 mm/s and the temperature gradient of 45 K/mm, and the ultimate strength of 2050 MPa and fracture plastic strain of 14.6% of the composite were achieved, which was mainly interpreted by the homogeneous dispersion of bcc beta-Zr phase in the glass matrix. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we report for the first time the spontaneous formation of Zr-based metallic glass nanofilms by developed dynamic forced-shear-rupture technique of hat-shaped specimens. The obtained nanofilms have about 100 nm thickness and other two geometrical dimensions can reach micrometer scales. Their glassy nature and structural stability were solidly identified. It was found that electrons with the wavelength of less than 0.165 Å could make the metallic glass nanofilms transparent. Furthermore, it is clearly shown that shearbanding instability still afflicts such 100-nm-thick metallic glass nanofilms.