93 resultados para Semisolid Structure Formation
Resumo:
A systematic investigation on glass formation in the PbF2-InF3-BaHPO4 ternary system has been carried out. These glasses have characterized by IR spectra, Raman spectra and differential thermal analysis. The results show that the structure of these glasses is mainly affected by BaHPO4 and InF3 contents. With decreasing BaHPO4 content, the glass structure gradually transforms from metaphosphate to polyphosphate. When InF3 content is low, it mainly acts as network modifier, when its content is high; it enters glass matrix and forms In(O,F)(6) groups connecting the polymerized phosphorus oxygen species. PbF2 mainly acts as network modifier in this system. Systematic variations of the glass transition temperature and the thermal stability index agree well with these results. The most stable glass with Delta T = 230 degrees C and S = 21.79 K is obtained. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Yb3+/ Er3+-codoped oxychloride germanate glasses have been synthesized by a conventional melting and quenching method. Structural properties were obtained based on Raman-spectra investigation, indicating that PbCl2 plays an important role in the formation of the glass network and has an important influence on the phonon density and the maximum phonon energy. The Judd - Ofelt intensity parameters and quantum efficiencies were calculated based on the Judd - Ofelt theory and lifetime measurements. The enhanced upconversion luminescence intensity of Er3+ with increasing PbCl2 content could not be explained only by the maximum phonon-energy change of the host glasses. For the first time, the effect of PbCl2 addition on phonon density, OH- content, and upconversion luminescence in oxychloride glasses has been discussed and evaluated. The results show that the effect of phonon density and OH- content on upconversion luminescence in oxychloride glasses is much stronger than that of the decrease of the maximum phonon energy. The possible upconversion luminescence mechanisms have also been estimated and are discussed.
Resumo:
The structure of the titanate glass is destroyed during irradiation by the femtosecond laser pulses, and (TiO6)(8-) and (TiO4)(4-) anion units are exsolved from the network of the titanate glass. These anion units are rearranged to form some crystals such as anatase and Ba2TiO4 crystals. By Raman spectroscopy, it is found that these crystals have a strong dependence on the intensity of the femtosecond laser pulses. The relation between the generation of these crystals and space distribution of the femtosecond laser power intensity is qualitatively explained. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ternary CoNiP nanowire (NW) arrays have been synthesized by electrochemical deposition inside the nanochannels of anodic aluminum oxide (AAO) template. The CoNiP NWs deposited at room temperature present soft magnetic properties, with both parallel and perpendicular coercivities less than 500 Oe. In contrast, as the electrolyte temperature (T-elc) increases from 323 to 343 K, the NWs exhibit hard magnetic properties with coercivities in the range of 1000-2500 Oe. This dramatic increase in coercivities can be attributed to the domain wall pinning that is related to the formation of Ni and Co nanocrystallites and the increase of P content. The parallel coercivity (i.e. the applied field perpendicular to the membrane surface) maximum as high as 2500 Oe with squareness ratio up to 0.8 is achieved at the electrolyte temperature of 328 K. It has been demonstrated that the parallel coercivity of CoNiP NWs can be tuned in a wide range of 200-2500 Oe by controlling the electrolyte temperature, providing an easy way to control magnetic properties and thereby for their integration with magnetic-micro-electromechanical systems (MEMS). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A study on the layer structure of W/C multilayers deposited by magnetron sputtering is reported. In the study, soft x-ray resonant reflectivity and hard x-ray grazing incidence reflectivity of the W/C multilayers were measured. The imperfections at the interface such as interdiffusion and formation of compounds were dealt with by two methods. On analyzing the experimental results, we found that the incorporation of an interlayer was a more suitable method than the traditional statistical method to describe the layer structure of a W/C system we fabricated. The optical constants of each layer at a wavelength of 4.48 nm were also obtained from the analysis. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
By the use of partial least squares (PLS) method and 27 quantum chemical descriptors computed by PM3 Hamiltonian, a statistically significant QSPR were obtained for direct photolysis quantum yields (Y) of selected Polychlorinated dibenzo-p-dioxins (PCDDs). The QSPR can be used for prediction. The direct photolysis quantum yields of the PCDDs are dependent on the number of chlorine atoms bonded with the parent structures, the character of the carbon-oxygen bonds, and molecular polarity. Increasing bulkness and polarity of PCDDs lead to decrease of log Y values. Increasing the frontier molecular orbital energies (E-lumo and E-homo) and heat of formation (HOF) values leads to increase of log Y values. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The hydrogen dilution profiling (HDP) technique has been developed to improve the quality and the crystalline uniformity in the growth direction of mu c-Si:H thin films prepared by hot-wire chemical-vapor deposition. The high H dilution in the initial growth stage reduces the amorphous transition layer from 30-50 to less than 10 nm. The uniformity of crystalline content X-c in the growth direction was much improved by the proper design of hydrogen dilution profiling which effectively controls the nonuniform transition region of Xc from 300 to less than 30 nm. Furthermore, the HDP approach restrains the formation of microvoids in mu c-Si: H thin films with a high Xc and enhances the compactness of the film. As a result the stability of mu c-Si: H thin films by HDP against the oxygen diffusion, as well as the electrical property, is much improved. (c) 2005 American Institute of Physics.
Resumo:
The growth interruption (GI) effect on GaSb quantum dot formation grown on GaAs by molecular beam epitaxy was investigated. The structure characterization was performed by reflection high-energy electron diffraction (RHEED), along with photoluminescence measurements. It is found that the GI can significantly change the surface morphology of GaSb QDs. During the GI, the QDs structures can be smoothed out and turned into a 2D-like structure. The time duration of the GI required for the 3D/2D transition depends on the growth time of the GaSb layer. It increases with the increase of the growth time. Our results are explained by a combined effect of the stress relaxation process and surface exchange reactions during the GI. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
InAs self-organized quantum dots (QDs) grown on annealed low-temperature GaAs (LT-GaAs) epi-layers and on normal temperature GaAs buffer layers have been compared by transmission electron microscopy (TEM) and photoluminescence (PL) measurements. TEM evidences that self-organized QDs were formed with a smaller size and larger density than that on normal GaAs buffer layers. It is discussed that local tensile surface strain regions that are preferred sites for InAs islands nucleation are increased in the case of the LT-GaAs buffer layers due to exhibiting As precipitates. The PL spectra show a blue-shifted peak energy with narrower linewidth revealing the improvement of optical properties of the QDs grown on LT-GaAs epi-layers. It suggests us a new way to improve the uniformity and change the energy band structure of the InAs self-organized QDs by carefully controlling the surface stress states of the LT-GaAs buffers on which the QDs are formed. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We have examined the influence of substrate surface orientation on self-assembled InAlAs/AlGaAs quantum dots grown on (0 0 1) and (n 1 1) A/B (n = 3, 5) GaAs substrates by molecular beam epitaxy (MBE). Preliminary characterizations have been performed using photoluminescence (PL) and transmission electron microscopy (TEM). The PL emission energies of quantum dots on high Miller index surface are found to be strongly dependent on the atomic-terminated surface (A or B surface) of the substrate. We observed that there were planar ordering larger islands on (3 1 1)B surface compared to (0 0 1) surface, in contrast, a rough interface and smaller "grains" on (3 1 1)A surface, this result is identical with PL emission energy from these islands. We propose that the rapid strain-induced surface "roughening" impedes the formation of 3D islands on A surface, and indicating that this is a promising approach of the realization of ordering distribution on (3 1 1)B plane for devices such as red-emitting semiconductor quantum dots lasers. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Fe-N films containing the Fe16N2 phase were prepared in a high-vacuum system of ion-beam-assisted deposition (IBAD). The composition and structure of the films were analysed by Auger electron spectroscopy (AES) and X-ray diffraction (XRD), respectively. Magnetic properties of the films were measured by a vibrating sample magnetometer (VSM). The phase composition of Fe-N films depend sensitively on the N/Fe atomic arrival ratio and the deposition temperature. An Fe16N2 film was deposited successfully on a GaAs (1 0 0) substrate by IBAD at a N/Fe atomic arrival ratio of 0.12. The gram-saturation magnetic moment of the Fe16N2 film obtained is 237 emu/g at room temperature, the possible cause has been analysed and discussed. Hysteresis loops of Fe16N2 have been measured, the coercive force H-c is about 120 Oe, which is much larger than the value for Fe, this means the Fe16N2 sample exhibits a large uniaxial magnetocrystalline anisotropy. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
PbS clusters in zeolite-Y have been prepared with the reaction of Pb2+-ion-exchanged zeolite-Y with Na2S in solution at room temperature. Their absorption spectra show dramatic blue shifts from that of the bulk PbS. Obvious change of both the absorption edges and peak positions upon PbS concentrations have been observed. These phenomena provide evidences that PbS clusters have been formed within the zeolite. The absorption spectra show featureless structure and have no tails near the absorption edges. As the PbS loading density becomes higher, the absorption bands become stronger and sharpen. Order PbS clusters lattice with high quality might be formed in the supercages of zeolite-Y. (C) 1996 American Institute of Physics.
Resumo:
Fe-N films containing the Fe16N2 phase were prepared in a high-vacuum system of ion-beam-assisted deposition (IBAD). The composition and structure of the films were analysed by Auger electron spectroscopy (AES) and X-ray diffraction (XRD), respectively. Magnetic properties of the films were measured by a vibrating sample magnetometer (VSM). The phase composition of Fe-N films depend sensitively on the N/Fe atomic arrival ratio and the deposition temperature. An Fe16N2 film was deposited successfully on a GaAs (1 0 0) substrate by IBAD at a N/Fe atomic arrival ratio of 0.12. The gram-saturation magnetic moment of the Fe16N2 film obtained is 237 emu/g at room temperature, the possible cause has been analysed and discussed. Hysteresis loops of Fe16N2 have been measured, the coercive force H-c is about 120 Oe, which is much larger than the value for Fe, this means the Fe16N2 sample exhibits a large uniaxial magnetocrystalline anisotropy. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
By in situ monitoring structural changes with the reflection spectrometer during the colloidal crystallization, we present direct experimental evidence of liquid-bcc-fcc phase transition in crystallization of charged colloidal particles, as a manifestation of the Ostwald's step rule. In addition, the lifetime of the bcc metastable structure in this system decreases significantly with increasing particle volume fraction, offering a possible explanation for "exceptions" to the step rule.
Resumo:
Properties for the ground state of C-9 are studied in the relativistic continuum Hartree-Bogoliubov theory with the NLSH, NLLN and TM2 effective interactions. Pairing correlations are taken into account by a density-dependent delta-force with the pairing strength for protons determined by fitting either to the experimental binding energy or to the odd-even mass difference from the five-point formula. The effects of pairing correlations on the formation of proton halo in the ground state of C-9 are examined. The halo structure is shown to be formed by the partially occupied valence proton levels p(3/2) and p(1/2).