44 resultados para Sedimentary sands
Resumo:
The sedimentary-volcanic tuff (locally called "green-bean rock") formed during the early Middle Triassic volcanic event in Guizhou Province is characterized as being thin, stable, widespread, short in forming time and predominantly green in color. The green-bean rock is a perfect indicator for stratigraphic division. Its petrographic and geochemical features are unique, and it is composed mainly of glassy fragments and subordinately of crystal fragments and volcanic ash balls. Analysis of the major and trace elements and rare-earth elements ( REE), as well as the related diagrams, permits us to believe that the green-bean rock is acidic volcanic material of the calc-alkaline series formed in the Indosinian orogenic belt on the Sino-Vietnam border, which was atmospherically transported to the tectonically stable areas and then deposited as sedimentary-volcanic rocks there. According to the age of green-bean rock, it is deduced that the boundary age of the Middle-Lower Triassic overlain by the sedimentary-volcanic tuff is about 247 Ma.
Resumo:
The scour of the seabed under a pipeline is studied experimentally in this paper. Tests are carried out in a U-shaped oscillatory water tunnel with a box imbedded in the bottom of the test section. By use of the standard sand, clay and plastic grain as the seabed material, the influence of the bed material on the scour is studied. The relationship between the critical initial gap-to-diameter ratio above which no scour occurs and the parameters of the oscillating flow is obtained. The self-burial phenomenon. which occurs for the pipeline not fixed to two sidewalls of the test section, is not observed for the Bred pipeline. The effect of the pipe on sand wave formation is discussed. The maximum equilibrium scour depths For different initial gap-to-diameter ratios, different Kc numbers and different bed sands are also given in this paper.
Resumo:
Wave-soil-pipe coupling effect on the untrenched pipeline stability on sands is for the first time investigated experimentally. Tests are conducted in the U-shaped water tunnel, which generates an oscillatory how, simulating the water particle movements with periodically changing direction under the wave action. Characteristic times and phases during the instability process are revealed. Linear relationship between Froude number and non-dimensional pipe weight is obtained. Effects of initial embedment and loading history are observed. Test results between the wavesoil-pipe interaction and pipe-soil interaction under cyclic mechanical loading are compared. The mechanism is briefly discussed. For applying in the practical design, more extensive and systematic investigations are needed.
Resumo:
分析了几组原状、重塑和配制土样的静三轴试验结果,认为颗粒级配和结构性是影响粉砂应力-应变关系和强度特性的两个主要因素.当颗粒级配不同时,结构性原状粉砂土样和不具有结构性的配制土的强度均不同.相同颗粒级配的原状和重塑粉砂的强度也不同.而颗粒级配稍有不同的一种配制粉砂与原状粉砂在应力-应变关系和强度特性方面相接近.此种配制粉砂可替代原状粉砂做为模型试验用土.
Resumo:
This paper presents the results of a series of centrifuge model tests performed to study the behavior of suction bucket foundations for a tension leg platform in the Bohai Bay, China. The target lateral loadings were from ice-sheet-induced structural vibrations at a frequency of 0.8-1.0 Hz. The results indicate that excess pore water pressures reach the highest values within a depth of 1.0-1.5 in below the mud line. The pore pressures and the induced settlement and lateral displacement increase with the amplitude of the cyclic loading. Two failure modes were observed: liquefaction in early excitations and settlement-induced problems after long-term excitations. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The shear strength of soils or rocks developed in a landslide usually exhibits anisotropic and nonlinear behavior. The process of sedimentation and subsequent consolidation can cause anisotropy of sedimentary soils or rocks, for instance. Nonlinearity of failure envelope could be attributed to "interlocking" or "dilatancy" of the material, which is generally dependent upon the stress level. An analytical method considering both anisotropy and nonlinearity of the failure envelops of soil and rocks is presented in the paper. The nonlinearfailure envelopes can be determined from routine triaxial tests. A spreadsheet program, which uses the Janbu's Generalized Procedure of Slice and incorporates anisotropic, illustrates the implementation of the approach and nonlinearfailure envelops. In the analysis, an equivalent Mohr-Coulomb linear failure criterion is obtained by drawing a tangent to the nonlinear envelope of an anisotropic soil at an appropriate stress level. An illustrative example is presented to show the feasibility and numerical efficiency of the method.
Resumo:
Large parts of shallow seas are covered by regular seabed patterns and sand wave is one kind of these patterns. The instability of the sedimentary structures may hazard pipelines and the foundations of offshore structures. In the last decade or so, it's a focus for engineers to investigate the movement mechanism of sand waves. Previous theoretical studies of the subject have developed a general model to predict the growth and migration of sand waves, which is based on the two-dimensional vertical shallow water equations and the bed-form deformation equations. Although the relation between wave-current flow and sand bed deformation has been established, the topographic influence has not been considered in the model. In this paper some special patterns, which are asymmetric and close to the reality, are represent as the perturbed seabed and the evolution of sand waves is calculated. The combination of a steady flow induced by wind and a sinusoidal tidal flow is considered as the basic flow. Finally the relations of some parameters (grain size, etc.) and sand waves' growth and migration are discussed, and the growth rate and migration speeds of asymmetric sand waves are carried out.
Resumo:
For better understanding the mechanism of the occurrence of pipeline span for a pipeline with initial embedment, physical and numerical methods are adopted in this study. Experimental observations show that there often exist three characteristic phases in the process of the partially embedded pipeline being suspended: (a) local scour around pipe; (b) onset of soil erosion beneath pipe; and (c) complete suspension of pipe. The effects of local scour on the onset of soil erosion beneath the pipe are much less than those of soil seepage failure induced by the pressure drop. Based on the above observations and analyses, the mechanism of the occurrence of pipeline spanning is analyzed numerically in view of soil seepage failure. In the numerical analyses, the current-induced pressure along the soil surface in the vicinity of the pipe (i.e. the pressure drop) is firstly obtained by solving the N-S equations, thereafter the seepage flow in the soil is calculated with the obtained pressure drop as the boundary conditions along the soil surface. Numerical results indicate that the seepage failure (or piping) may occur at the exit of the seepage path when the pressure gradient gets larger than the critical value. The numerical treatment provides a practical tool for evaluating the potentials for the occurrence of pipe span due to the soil seepage failure.
Resumo:
Abstract: In order to investigate the effects of the grain size distribution and the micro-structure of soils on the mechani- cal characteristics, some static triaxial compression tests were carried out, and then the relationship of stress-strain and the strength behavior of silty sand were compared among undisturbed samples with different grain size distribution, undis- turbed and remolded samples with the same grain size distribution, and reconstituted samples (or called mixed samples) with different grain size distribution. The effects of grain size distribution and structure on the mechanic behavior of silty sands were mainly analyzed. It is shown that the obvious differences of the mechanical characteristics between undis- turbed soils and remolded soils are caused by the differences of soil structures. Although the grain size distribution are different between two soil samples, their mechanical characteristics may be close to each other, or may have obvious differences because of the effects of micro-structure.