61 resultados para SOYBEAN PROTEINASE-INHIBITOR
Resumo:
The Ag5 proteins are the most abundant and immunogenic proteins in the venom secretory ducts of stinging insects. An antigen 5-like protein (named tabRTS) composed of 221 amino acid residues was purified and characterized from the salivary glands of the horsefly, Tabanus yao (Diptera, Tabanidae). Its cDNA was cloned from the cDNA library of the horsefly's salivary gland. TabRTS containing the SCP domain (Sc7 family of extracellular protein domain) was found in insect antigen 5 proteins. More interestingly, there is an Arg-Thr-Ser (RTS) disintegrin motif at the C-terminus of tabRTS. The RTS motif is positioned in a loop bracketed by cysteine residues as those found in RTS-disintegrins of Crotalidae and Viperidae snake venoms, which act as angiogenesis inhibitors. Endothelial Cell Tube formation assay in vitro and chicken chorioallantoic membrane (CAM) angiogenesis assay in vivo were performed as to investigate the effect of tabRTS on angiogenesis. It was found that tabRTS could significantly inhibit angiogenesis in vitro and in vivo. Anti-alpha(1)beta(1) monoclonal antibody could dose-dependently inhibit the anti-angiogenic activity of tabRTS. This result indicated that tabRTS possibly targets the alpha(1)beta(1) integrin to exert the anti-angiogenic activity as snake venom RTS-/KTS-disintegrins do. The current work revealed the first angiogenesis inhibitor protein containing RTS motif from invertebrates, a possible novel type of RTS-disintegrin. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Trichosanthin (TCS) is a type I ribosome-inactivating protein possessing multiple biological and pharmacological activities. One of its major actions is inhibition of human immunodeficiency virus (HIV) replication. The mechanism is still not clear. It is
Resumo:
Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-fa
Resumo:
Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide
Resumo:
By Sephadex G-50 gel filtration, cation-exchange CM-Sephadex C-25 chromatography and reversed phase high-performance liquid chromatography (HPLC), a novel serine protease inhibitor named bungaruskunin was purified and characterized from venom of Bungarus fasciatus. Its cDNA was also cloned from the cDNA library of B. fasciatus venomous glands. The predicted precursor is composed of 83 amino acid (aa) residues including a 24-aa signal peptide and a 59-aa mature bungaruskunin. Bungaruskunin showed maximal similarity (64%) with the predicted serine protease inhibitor blackelin deduced from the cDNA sequence of the red-bellied black snake Pseudechis porphyriacus. Bungaruskunin is a Kunitz protease inhibitor with a conserved Kunitz domain and could exert inhibitory activity against trypsin, chymotrypsin, and elastase. By screening the cDNA library, two new B chains of beta-bungarotoxin are also identified. The overall structures of bungaruskunin and beta -bungarotoxin B chains are similar; especially they have highly conserved signal peptide sequences. These findings strongly suggest that snake Kunitz/BPTI protease inhibitors and neurotoxic homologs may have originated from a common ancestor. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Sertoli cells play a central role in the control and maintenance of spermatogenesis. Isolated Sertoli cells of mouse and rat testes have been shown to secrete plasminogen activator (PA) and a plasminogen activator inhibitor type-1 (PAI-1) in culture. In this study, we have investigated the hormonal regulation of PA and PAI-1 activities in cultured monkey Sertoli cells. Sertoli cells (5x10(5) cells/well) isolated from infant rhesus monkey testes were preincubated at 35 degrees C for 16 h in 24-well plates precoated with poly(D-lysine) (5 mu g/cm(2)) in 0.5 mi McCoy's 5a medium containing 5% of fetal calf serum and further incubated for 48 h in 0.5 mi serum-free medium with or without various hormones or other compounds, PA as well as PAI-1 activities in the conditioned media were assayed by fibrin overlay and reverse fibrin autography techniques respectively. The Sertoli cells in vitro secreted only tissue-type PA (tPA), no detectable amount of urokinase-type PA (uPA) could be observed, Monkey Sertoli cells were also capable of secreting PAI-1, Immunocytochemical studies indicated that both tPA and PAI-1 positive staining localized in the Sertoli cells, spermatids and residual bodies of the seminiferous epithelium; Northern blot analysis further confirmed the presence of both tPA and PAI-1 mRNA in monkey Sertoli cells. Addition of follicle-stimulating hormone (FSH) or cyclic adenosine monophosphate (cAMP) derivatives or cAMP-generating agents and gonadotrophin-releasing hormone (GnRH) agonist or phorbol ester (PMA) to the cell culture significantly increased tPA activity. PAI-1 activity in the culture was also enhanced by these reagents except 8-bromo-dibutyryl-cAMP, forskolin and 3-isobutyl-1-methylxanthin (MIX) which greatly stimulated tPA activity, whereas decreased PAI-1 activity, implying that neutralization of PAI-1 activity by tile high level of tPA in the conditioned media may occur. These data suggest that increased intracellular signals which activate protein kinase A (PKA), or protein kinase C (PKC) can modulate Sertoli cell tPA and PAI-1 activities, The concomitant induction of PA and PAI-1 by the same reagents in the Sertoli cells may reflect a finely tuned regulatory mechanism in which PAI-1 could limit the excession of the proteolysis.
Resumo:
A chymotrypsin inhibitor, designated NA-CI, was isolated from the venom of the Chinese cobra Naja atra by three-step chromatography. It inhibited bovine (x-chymotrypsin with a K-i of 25 nM. The molecular mass of NA-CI was determined to be 6403.8 Da by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) analysis. The complete amino acid sequence was determined after digestion of S-carboxymethylated inhibitor with Staphylococcus aureus V8 protease and porcine trypsin. NA-CI was a single polypeptide chain composed of 57 amino acid residues. The main contact site with the protease (PI) has a Phe, showing the specificity of the inhibitor. NA-CI shared great similarity with the chymotrypsin inhibitor from Naja naja venom (identities = 89.5%) and other snake venom protease inhibitors. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The dissociation of methane hydrate in the presence of ethylene glycol (11.45 mol.L-1) at 277.0 K was studied using canonical ensemble (NVT) molecular dynamics simulations. Results show that hydrate dissociation starts from the surface layer of the solid hydrate and then gradually expands to the internal layer. Thus, the solid structure gradually shrinks until it disappears. A distortion of the hydrate lattice structure occurs first and then the hydrate evolves from a fractured frame to a fractional fragment. Finally, water molecules in the hydrate construction exist in the liquid state. The inner dissociating layer is, additionally, coated by a liquid film formed from outer dissociated water molecules outside. This film inhibits the mass transfer performance of the inner molecules during the hydrate dissociation process.
Resumo:
The characteristic of biodiesel fuel production from transesterification of soybean oil is studied. The reactant solution is the mixture of soybean oil, methanol, and solvent. A new lipase immobilization method, textile cloth immobilization, was developed in this study. Immobilized Candida lipase sp. 99-125 was applied as the enzyme catalyst. The effect of flow rate of reaction liquid, solvents, reaction time, and water content on the biodiesel yield is investigated. Products analysis shows that the main components in biodiesel are methyl sterate, methyl hexadecanoate, methyl oleate, methyl linoleate, and methyl linolenate. The test results indicate that the maximum yield of biodiesel of 92% was obtained at the conditions of hexane being the solvent, water content being 20 wt%, and reaction time being 24 h.
Resumo:
This paper describes an attractive method to make biodiesel from soybean soapstock (SS). A novel recovery technology of acid oil (AO) from SS has been developed with only sulfuric acid solution under the ambient temperature (25 +/- 2 degrees C). After drying, AO contained 50.0% FFA, 15.5% TAG 6.9% DAG 3.1% MAG 0.8% water and other inert materials. The recovery yield of AO was about 97% (w/w) based on the total fatty acids of the SS. The acid oil could be directly converted into biodiesel at 95 degrees C in a pressurized reactor within 5 hours. Optimal esterification conditions were determined to be a weight ratio of 1 : 1.5 : 0.1 of AO/methanol/sulfuric acid. Higher reaction temperature helps to shorten the reaction time and requires less catalyst and methanol. Ester content of the biodiesel derived from AO through one-step acid catalyzed reaction is around 92%. After distillation, the purity of the biodiesel produced from AO is 97.6% which meets the Biodiesel Specification of Korea. The yield of purified biodiesel was 94% (w/w) based on the total fatty acids of the soapstock.