307 resultados para SILVER BROMIDE CLUSTERS
Resumo:
Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.
Resumo:
The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effects of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.
Resumo:
High-energy ion emission from intense-ultrashort (30fs) laser-pulse- cooled deuterium-cluster (80K) interaction is measured. The deuterium ions have an average energy 20keV, which greatly exceeds Zweiback's expectation [Phys. Rev. Lett. 84 (2000) 2634]. These fast deuterium ions can be used to drive fusion and have a broad prospect.
Resumo:
The dependence of the maximum and average energies of protons, which were produced in the interaction of an intense laser pulse (similar to 1 x 10(16) W cm(-2), 65 fs) with hydrogen clusters in a gas jet backed up to 80 bar at liquid nitrogen temperature (similar to 80 K), on the backing pressure has been studied. The general trend of the proton energy dependence on the square of the average cluster radius, which is determined by a calibrated Rayleigh scattering measurement, is similar to that described by theory under the single size approximation. Calculations are made to fit the experimental results under a simplified model by taking into account both a log-normal cluster size distribution and the laser intensity attenuation in the interaction volume. A very good agreement between the experimental proton energy spectra and the calculations is obtained in the high- energy part of the proton energy distributions, but a discrepancy of the fits is revealed in the low-energy part at higher backing pressures which are associated with denser flows. A possible mechanism which would be responsible for this discrepancy is discussed. Finally, from the fits, a variation of the cluster size distributions was revealed to be dependent on the gas backing pressure as well as on the evolving time of the gas flow of clusters.
Resumo:
Two overrun effects in the Coulomb explosion dynamics of heteronuclear clusters have been investigated theoretically by the use of a simplified electrostatic model. When the charge-to-mass ratio of light ions is higher than that of heavy ions, the light ions can overtake the heavy ions inside the cluster and acquire a higher kinetic energy. Further, if the charge density of the heavy ions is twice as high as that of the light ions, i.e. a proposed competitive parameter xi = rho BqB/rho AqA > 2, the inner light ions can overtake those light ions on the surface of the cluster and form a shock shell during the explosion, which might drive the intracluster collision and fusion of the light ions. Different regimes of nuclear fusion are discussed and the corresponding neutron yields are estimated. Our analysis indicates that the probability of intracluster fusion is quite low even if deuterated heteronuclear clusters such as (DI)(n) with large size and high competitive parameter are employed. However, heteronuclear clusters are still a better candidate compared with homonuclear clusters for enhancing the total intercluster fusion yield because both a higher energy region and a higher proportion of deuterons distributing in the energy region can be created in the deuterated heteronuclear clusters.
Resumo:
The authors report the investigation of filament and supercontinuum generation by focusing a femtosecond laser beam into water doped with silver nanoparticles. The silver nanoparticles enhance the nonlinear optical response of water, leading to broadening of supercontinuum spectra in self-focused femtosecond filaments. During the propagation of the supercontinuum light in the filament, the silver nanoparticles preferentially scatter the short-wavelength light near the plasmon resonant wavelength peak, followed by the scattering of the long-wavelength light. Thus, a side view of the filament shows a full-color spectrum in the visible range, which is herein called "rainbow filament." (c) 2007 American Institute of Physics.
Resumo:
Silver nanowires in large quantities can be obtained through a simple method in the absence of a surfactant or polymer and without addition of external seeding nanocrystallites. A plausible mechanism was proposed to elucidate the formation mechanism of silver nanowires based on TEM studies.
Resumo:
Recent theoretical and experimental results suggested that the silver superlens could be constructed through controlling silver thin film thickness and preparation conditions, and applied in subdiffraction-limited optical imaging and optical lithography. In this work, we report another significant application of silver superlens-ultrahigh density optical data storage. With the silver superlens the subdiffraction-limited pit arrays on an optical disk are dynamically read out and the carrier-to-noise ratio can reach 25 dB for the thin film thickness of 46 nm. The readout laser power and readout velocity have little effect on the carrier-to-noise ratio. Additionally, in our experiment the silver thin film thickness needs to be controlled in the range from 20 to 80 nm.
Resumo:
Fast moving arrays of periodic sub-diffraction-limit pits were dynamically read out via a silver thin film. The mechanism of the dynamic readout is analysed and discussed in detail, both experimentally and theoretically. The analysis and experiment show that, in the course of readout, surface plasmons can be excited at the silver/air interface by the focused laser beam and amplified by the silver thin film. The surface plasmons are transmitted into the substrate/silver interface with a large enhancement. The surface waves at the substrate/silver interface are scattered by the sinusoidal pits of sub-diffraction-limit size. The scattered waves are collected by a converging lens and guided into the detector for the readout.
Resumo:
We report on space-selective co-precipitation of silver and gold nanoparticles in Ag+, Au3+ co-doped silicate glasses by irradiation of femtosecond laser pulses and subsequent annealing at high temperatures. The color of the irradiated area in the glass sample changed from yellow to red with the increase of the annealing temperature. The effects of average laser power and annealing temperature on precipitation of the nanoparticles were investigated. A reasonable mechanism was proposed to explain the observed phenomena. (c) 2006 Elsevier Ltd. All rights reserved.