42 resultados para Right of Partial Withdrawal
Resumo:
为突出局部灌溉不足或灌溉过量对均匀性的影响程度,提出了基于几何平均数分布均匀系数的概念,将其定义为部分测点水深几何平均值与所有测点算术平均值的比值。并根据部分测点水深数据的提取方法不同,分为1/4低值、1/4高值、1/2低值和1/2高值分布均匀系数。用MATLAB和VC~++语言编制了可以实现上述分布均匀系数计算的软件"SIUEW1.0"。结果初步证明:基于几何平均数的乘法模型要比基于算术平均数的加法模型更加突出了部分低(或高)于平均值的测点水深数据对均匀系数的影响程度,因此更适用于时局部灌溉不足或过量灌溉有严格控制要求地块的灌溉均匀性评价;无论高值和低值,取点数越少,均匀性的评价结果越差。
Resumo:
In conventional metals, there is plenty of space for dislocations-line defects whose motion results in permanent material deformation-to multiply, so that the metal strengths are controlled by dislocation interactions with grain boundaries(1,2) and other obstacles(3,4). For nano-structured materials, in contrast, dislocation multiplication is severely confined by the nanometre-scale geometries so that continued plasticity can be expected to be source-controlled. Nano-grained polycrystalline materials were found to be strong but brittle(5-9), because both nucleation and motion of dislocations are effectively suppressed by the nanoscale crystallites. Here we report a dislocation-nucleation-controlled mechanism in nano-twinned metals(10,11) in which there are plenty of dislocation nucleation sites but dislocation motion is not confined. We show that dislocation nucleation governs the strength of such materials, resulting in their softening below a critical twin thickness. Large-scale molecular dynamics simulations and a kinetic theory of dislocation nucleation in nano-twinned metals show that there exists a transition in deformation mechanism, occurring at a critical twin-boundary spacing for which strength is maximized. At this point, the classical Hall-Petch type of strengthening due to dislocation pile-up and cutting through twin planes switches to a dislocation-nucleation-controlled softening mechanism with twin-boundary migration resulting from nucleation and motion of partial dislocations parallel to the twin planes. Most previous studies(12,13) did not consider a sufficient range of twin thickness and therefore missed this strength-softening regime. The simulations indicate that the critical twin-boundary spacing for the onset of softening in nano-twinned copper and the maximum strength depend on the grain size: the smaller the grain size, the smaller the critical twin-boundary spacing, and the higher the maximum strength of the material.
Resumo:
在介绍了由文献[1,8]提出来的带有对称编码的基因算法后,本文进一步讨论了这种基因算法中采用的部分基因保留技术和“移民”技术对算法性能的影响,确定了“移民”技术的3个必须步骤、最佳基因保留量(25%)及其选择范围(20~50%).对算法的计算机实验所得到的结果表明,如果不采用这两项技术,带有对称编码的基因算法的性能就会降低,所得到的解的质量就会下降,有时甚至会使新的基因算法表现的象传统的基因算法一样,对象机器人的动力学优化控制这样的问题无能为力。
Resumo:
Gakkel Ridge in Arctic Ocean is the ulstraslow spreading ridge in the world with a full spreading rate decreasing from 14 mm/yr in the western end to 7mm/yr in the eastern end. To study the histories of partial melting and melt referilization occurred in the oceanic mantle beneath Gakkel Ridge, both extremely fresh and altered abyssal peridotites from two dredge hauls (PS66-238 and HLY0102-D70) have been selected in this research. Major and trace element data of the residual minerals suggest that all samples have been refertilized by late enriched melts after low to moderate degrees (3-12%) of partial melting in the stability field of spinel, whereas some samples also inherited signatures of partial melting in stability field of garnet. Os isotopic compositions of Gakkel samples have not been significantly affected by late processes, e.g., seawater alteration and melt refertilzaiton. Samples from both dredge hauls have similar range of 187Os/188Os, from strongly unradiogenic (~0.114) in the harzburgites to approximating the inferred values of PUM (primitive upper mantle) in some lherzolites (~0.129). Inherited ancient depletion events in the harzburgites with Re-depletion age up to 2 billion years are unrelevant to the recent genesis of MORB (mid-ocean ridge basalts) beneath Gakkel Ridge. Comparisons of highly siderophile elements (HSEs) between the fresh and altered samples suggested both Pd and Re were affected and thus are mobile during seawater alteration, whereas the other HSEs (i.e., Os, Ir, Ru an Pt) are stable. The fractionated HSEs patterns in the harzburgites suggest both PPGEs (Pt and Pd) and Re can be fractionated from IPGEs (Os, Ir and Ru) at low degree of partial melting, which might be due to physical dredging of sulfide melts by silicate melts rather than equilibrium partitioning between residues and silicate melts. Inferred HSEs budget of the PUM confirm the previous study that both Ru/Ir and Pd/Ir are suprachondritic in the PUM. Some modifications of late-veneer hypothesis are required in light of the unique PUM composition. HSEs and Os isotopic compositions of Gakkel abyssal peridotites indicate the oceanic mantle is highly heterogeneous within a scale of one dredge haul (<5 km). Both depleted and fertile mantle domains are likely to be mechanically juxtaposed in the asthenosphere in a state of ‘plum pudding’. Widely distribution of ancient depleted components in the asthenosphere suggests that DMM (depleted MORB mantle) should not be synonymous with the MORB source. The later is just the fertile part of the former, i.e., the depleted components in the DMM do not or contribute little to the genesis of MORB.
Resumo:
The Qinghai-Tibet Plateau lies in the place of the continent-continent collision between Indian and Eurasian plates. Because of their interaction the shallow and deep structures are very complicated. The force system forming the tectonic patterns and driving tectonic movements is effected together by the deep part of the lithosphere and the asthenosphere. It is important to study the 3-D velocity structures, the spheres and layers structures, material properties and states of the lithosphere and the asthenosphere for getting knowledge of their formation and evolution, dynamic process, layers coupling and exchange of material and energy. Based on the Rayleigh wave dispersion theory, we study the 3-D velocity structures, the depths of interfaces and thicknesses of different layers, including the crust, the lithosphere and the asthenosphere, the lithosphere-asthenosphere system in the Qinghai-Tibet Plateau and its adjacent areas. The following tasks include: (1)The digital seismic records of 221 seismic events have been collected, whose magnitudes are larger than 5.0 over the Qinghai-Tibet Plateau and its adjacent areas. These records come from 31 digital seismic stations of GSN , CDSN、NCDSN and part of Indian stations. After making instrument response calibration and filtering, group velocities of fundamental mode of Rayleigh waves are measured using the frequency-time analysis (FTAN) to get the observed dispersions. Furthermore, we strike cluster average for those similar ray paths. Finally, 819 dispersion curves (8-150s) are ready for dispersion inversion. (2)From these dispersion curves, pure dispersion data in 2°×2° cells of the areas (18°N-42°N, 70°E-106°E) are calculated by using function expansion method, proposed by Yanovskaya. The average initial model has been constructed by taking account of global AK135 model along with geodetic, geological, geophysical, receiving function and wide-angle reflection data. Then, initial S-wave velocity structures of the crust and upper mantle in the research areas have been obtained by using linear inversion (SVD) method. (3)Taking the results of the linear inversion as the initial model, we simultaneously invert the S wave velocities and thicknesses by using non-linear inversion (improved Simulated Annealing algorithm). Moreover, during the temperature dropping the variable-scale models are used. Comparing with the linear results, the spheres and layers by the non-linear inversion can be recognized better from the velocity value and offset. (4)The Moho discontinuity and top interface of the asthenosphere are recognized from the velocity value and offset of the layers. The thicknesses of the crust, lithosphere and asthenosphere are gained. These thicknesses are helpful to studying the structural differentia between the Qinghai-Tibet Plateau and its adjacent areas and among geologic units of the plateau. The results of the inversion will provide deep geophysical evidences for studying deep dynamical mechanism and exploring metal mineral resource and oil and gas resources. The following conclusions are reached by the distributions of the S wave velocities and thicknesses of the crust, lithosphere and asthenosphere, combining with previous researches. (1)The crust is very thick in the Qinghai-Tibet Plateau, varying from 60 km to 80 km. The lithospheric thickness in the Qinghai-Tibet Plateau is thinner (130-160 km) than its adjacent areas. Its asthenosphere is relatively thicker, varies from 150 km to 230 km, and the thickest area lies in the western Qiangtang. India located in south of Main Boundary thrust has a thinner crust (32-38 km), a thicker lithosphere of about 190 km and a rather thin asthenosphere of only 60 km. Sichuan and Tarim basins have the crust thickness less than 50km. Their lithospheres are thicker than the Qinghai-Tibet Plateau, and their asthenospheres are thinner. (2)The S-wave velocity variation pattern in the lithosphere-asthenosphere system has band-belted distribution along east-westward. These variations correlate with geology structures sketched by sutures and major faults. These sutures include Main Boundary thrust (MBT), Yarlung-Zangbo River suture (YZS), Bangong Lake-Nujiang suture (BNS), Jinshajiang suture (JSJS), Kunlun edge suture (KL). In the velocity maps of the upper and middle crust, these sutures can be sketched. In velocity maps of 250-300 km depth, MBT, BNS and JSJS can be sketched. In maps of the crustal thickness, the lithospheric thickness and the asthenospheric thickness, these sutures can be still sketched. In particular, MBT can be obviously resolved in these velocity maps and thickness maps. (3)Since the collision between India and Eurasian plate, the “loss” of surface material arising from crustal shortening is caused not only by crustal thickening but also by lateral extrusion material. The source of lateral extrusion lies in the Qiangtang block. These materials extrude along the JSJS and BNS with both rotation and dispersion in Daguaiwan. Finally, it extends toward southeast direction. (4)There is the crust-mantle transition zone of no distinct velocity jump in the lithosphere beneath the Qiangtang Terrane. It has thinner lithosphere and developed thicker asthenosphere. It implies that the crust-mantle transition zone of partial melting is connected with the developed asthenosphere. The underplating of asthenosphere may thin the lithosphere. This buoyancy might be the main mechanism and deep dynamics of the uplift of the Qinghai-Tibet hinterland. At the same time, the transport of hot material with low velocity intrudes into the upper mantle and the lower crust along cracks and faults forming the crust-mantle transition zone.
Resumo:
Western Qinling, a conjunction region of the North China Craton, the Yangtze Craton and the Tibetan Plateau, has very complicated history of geologic and tectonic evolution. Previous studies mainly focus on tectonics and petrology of volcanic rocks in the western Qinling. Therefore, little is known about the Cenozoic lithospheric mantle beneath the western Qinling. Mafic, ultramafic and/or alkaline volcanic rocks and their entrained mantle peridotitic xenoliths and xenocrysts are known as samples directly from the lithospheric mantle. Their petrological and geochemical characteristics can reflect the nature and deep processes of the lithospheric mantle. Cenozoic volcanic rocks in the western Qinling contain abundant mantle xenoliths and xenocrysts, which provide us an opportunity to probe the lithospheric mantle beneath this region and a new dimension to insight into geologic evolution. Cenozoic volcanic rocks (7-23 Ma) from the western Qinling are sparsely distributed in the Lixian-Dangchang-Xihe Counties, Gansu Province, China. Volcanic rocks contain plenty of mantle-derived xenoliths, including spinel lherzolites with subordinate wehrlite, dunite, olivine websterite, clinopyroxenite and garnet lherzolite, and few olivine, clinopyroxene and spinel xenocrysts. These peridotitic xenoliths show clear deformed textures and their major minerals show excellent orientation. Thus, these peridotites are typical deformed peridotites. Olivine xenocrysts have clearly-zoned textures. The peridotitic xenoliths can be divided into two groups based on their compositions, namely, the H-type and L-type. The H-type peridotites are characterized by high Fo (>90) in olivines in which fine-grained ones have higher Fo than the coarse grains, low CaO (<20 %) in clinopyroxenes, high Cr# (>40) in spinels and high equilibration temperatures. They may represent the refractory lithospheric mantle. In contrast, the L-type peridotites contain low Fo (<90) olivines (with lower Fo in fine-grained olivines), high CaO (>20 %) clinopyroxenes, low Cr# (<20) spinels and low equilibration temperatures. They experienced low degree of partial melting. The Cenozoic lithospheric mantle beneath the western Qinling was refractory in major element compositions based on the mineral compositions of xenoliths and xenocrysts and experienced complicated deep processes. The lithospheric mantle was modified by shear deformation due to the diapirism of asthenosphere and strong tectonic movements including the collision between North China Craton and Yangze Craton and the uplift of Tibetan Plateau, and then underwent metasomatism with a hydrous, Na, Ti and Cr enriched melt.
Resumo:
Global positioning system (GPS) can not only provide precise service for navigation and timing, but also be used to investigate the ionospheric variation. From the GPS observations, we can obtain total electron content (TEC), so-called GPS TEC, which is used to characterize the ionospheric structure. This thesis mainly concerns about GPS TEC data processing and ionospheric climatological analysis as follows. Firstly, develop an algorithm for high-resolution global ionospheric TEC mapping. According to current algorithms in global TEC mapping, we propose a practical way to calibrate the original GPS TEC with the existing GIM results. We also finish global/local TEC mapping by model fitting with the processed GPS TEC data; in practice, we apply it into the local TEC mapping in Southeast of China and obtain some initial results. Next, suggest a new method to calculate equivalent ionospheric global electron content (GEC). We calculate such an equivalent GEC with the TEC data along the geographic longitude 120°E. With the climatological analysis, we can see that GEC climatological variation is mainly composed of three factors: solar cycle, annual and semiannual variations. Solar cycle variation is dominant among them, which indicates the most prominent influence; both annual and semiannual variations play a secondary role and are modulated by solar activity. We construct an empirical GEC model driven by solar activity and seasonal factors on the basis of partial correlation analysis. Generally speaking, our researches not only show that GPS is advantageous in now-casting ionospheric TEC as an important observation, but also show that GEC may become a new index to describe the solar influence on the global ionosphere since the great correlation between GEC and solar activity factor indicates the close relationship between the ionosphere and solar activity.
Resumo:
The central-south Tibet is a part of the products of the continental plate collision between Eurasia and India. To study the deep structure of the study area is significant for understanding the dynamics of the continental-continental collision. A 3-D density model matched well with the observations in the central-south Tibet was proposed in this study. In addition, this study has also used numerical simulation method to prove that Quasi-Love (QL) wave is deduced by anisotropy variation but not by lateral heterogeneity. Meanwhile, anisotropy variation in the upper mantle of the Qiangtang terrane and Lhasa terrane is detected by the QL waves observed in recorded seismograms. Based on the gravity modeling, some results are summarized as follows: 1) Under the constrain of geometrical structure detected by seismic data, a 3-D density model and Moho interface are proposed by gravity inversion of the central-south Tibet. 2) The fact that the lower crustal densities are smaller than 3.2 g/cm3, suggests absence of eclogite or partial eclogitization due to delamination under the central-south Tibet. 3) Seismicity will be strong or weak in the most negative Bouguer gravity anomaly. So there is no a certain relationship between seismicity and Bouguer gravity anomaly. 4) Crustal composition are determined after temperature-pressure calibration of seismic P wave velocity. The composition of lower crust might be one or a mixture of: 1. amphibolite and greenschist facies basalt beneath the Qiangtang terrane; 2. gabbro-norite-troctolite and mafic granulite beneath the Lhasa terrane. Because the composition of the middle crust cannot be well constrained by the above data set, the data set published by Rudnick & Fountain (1995) is used for comparison. It indicated the composition of the middle crust is granulite facies and might be pelitic gneisses.Granulite facies used to be interpreted as residues of partial melting, which coincidences with the previous study on partial melting middle crust. Amphibolite facies are thought to be produced after delamination, when underplating works in the rebound of the lower crust and lithospheric mantle. From the seismology study, I have made several followed conclusions: 1) Through the numerical simulation experiment of surface wave propagating in heterogeneity media, we can find that amplitude and polarization of surface wave only change a little when considering heterogeneity. Furthermore, it is proved that QL waves, generated by surface wave scattering, are caused by lateral variation of anisotropy but not by heterogeneity. 2) QL waves are utilized to determine the variation of uppermost mantle anisotropy of the Tibetan plateau. QL waves are identified from the seismograms of the selected paths recorded by the CAD station. The location of azimuth anisotropy gradient is estimated from the group velocities of Rayleigh wave, Love wave and QL wave. It suggests that south-north lateral variation of azimuthal anisotropy locates in Tanggula mountain, and east-west lateral variation in the north of Gandese mountain with 85°E longitude and near the Jinsha river fault with 85°E longitude.
Resumo:
A mafic-ultramafic complex belt well developed in Eastern Tianshan, Xinjiang, NW China, which contains a series of Cu-Ni sulfide deposits. This area is the important production basis for Cu-Ni deposits, including Tulargen deposit, Hulu deposit, Huangshan-Huangshandong deposit, Hulu deposit, Xiangshan deposit, Tianyu deposit, Chuanzhu deposit. In China, especially Eastern Tianshan, it is prevalent that large Cu-Ni deposits occurred in small intrusions, typically including Jinchuan, Kalatongke, et al., so the ore-forming mechanism and evaluation rule for those small intrusions are very meaningful and of universal significance. On the basis of the research to typical Cu-Ni deposits, ore-forming conditions and processes are summarized through which to evaluate the ore-bearing potential for barren intrusions and unexplored mafic-ultramafic intrusions. By the contrast, metallogenic rule and mechanism of ore genesis are concluded, and evaluation system is preliminarily set up on the basis of these conclusions. Quantitatively simulation for the composition of olivine is introduced for the first time in China to discuss the interaction between magma and sulfide, and a new method to calculate the Mg-Fe composition of primitive magma is developed. Interaction between magma and sulfide liquid is used to get the Ni content in sulfide liquid. Sulfur isotopic characteristics in sulfide minerals in country rocks and ores are used to judge crustal sulfur introduction, which is applied for the first time in China. Re-Os isotopic characteristics are related to the ore-forming process, to interpret the process of enrichment of chalcophile elements. On the basis of the evaluation system, Mati, Chuanzhu, Luodong, Xiadong, those intrusions are evaluated to their ore-bearing potential. According to the studies to typical Cu-Ni deposits, conduit-type ore-forming model is set up, and the characteristics of the model are concluded systematically. The evaluation system and conduit-type ore-forming model can be helpful to the evaluation of mafic-ultramafic intrusions in this and similar mafic-ultramafic intrusion belts. The studied typical deposits and mafic-ultramafic intrusion include Tulargen deposit, Hulu deposit, Huangshandong deposit, Chuanzhu deposit, Mati intrusion,Luodong intrusion, Xiadong intrusion, and others. Through studies, there are similar characteristics for Tulargen and Hulu deposits in magma origin, composition of primitive magma(MgO=12.5%, FeO=12% and MgO=11%, FeO=10.5% respectively), magma evolution, mechanism of sulfide segregation and conduit-type ore-forming process. By Re-Os isotopic system, the ore forming date of Tulargen deposit is 265.6±9.2Ma, which is consistent to regional metallogenic event, but little younger. The Mg-Fe composition of primitive magma of Baishiquan, Huangshandong area, Kalatongke is lower than that of Tulargen and Hulu deposit, showing common basalt composition. The Mg# value(Mg#=(Mg/Mg+Fe)increases gradually from Kalatongke to Baishiquan to Huangshan-Huangshandong East. Baishiquan intrusions show relatively higher crustal contamination by evidence of trace element, which indicates the lower magma original source, from depleted mantle to crust. One break is the discovery of komatiitic intrusion, Xiadong intrusion, which shows characteristics of highly magnesium (Max Fo=96). The primitive magma is calculated of MgO=28%,FeO=9%, belonging to komatiitic magma. Tectonic evolution of Eastern Tianshan is discussed. By the statistics of ore-forming data of porphyry copper deposits, magmatic sulfide Cu-Ni deposits, orogenic hydrothermal gold deposits, we believe that those deposits are the successive products of oceanic subduction, are and back-arc basin collision and post-orogenic extention. And Cu-Ni sulfide deposits and orogenic gold deposits occurred in the stage of post-orogenic extention. According to the conclusions, the conduit-type ore-forming mechanism of magmatic sulfide deposit is set up, and its characteristics and conditions are concluded as well. The conduit-type ore-forming system includes magma generation, sulfide segregation, enrichment of chalcophile elements, interaction of sulfide and magma, sulfide collection in limited space in magma conduit and bottom of the chamber, which make a whole ore-forming system.The ore-forming process of Cu-Ni sulfide deposits is concluded as three steps: 1. mantle derived magma rises upward to the middle-upper crust; 2. magma suffers crustal contamination of different degrees and assimilates crustal sulfur, which leads to sulfur saturation and sulfide segregation. Sulfide liquid interacts with magma and concentrates chalcophile elements; 3. enriched sulfide located in the conduit(Tulargen) or bottom of the chamber (Hulu). Depleted magma rises upward continuously to form barren complexes. For the practical cases, Tulargen deposit represents the feeding conduit, and Hulu deposit represents the bottom of the staging magma chamber. So the deeper of west of Tulargen and southwest of Hulu are the favorite locate for ore location. The evaluation for ore potential can be summarized as follows: (1) Olivine can be served as indicator for magma evolution and events of sulfide segregation; (2) Sulfur isotopic characteristics is an efficient method to judge sulfur origin for magmatic sulfide deposit; (3) Re-Os content of the ores can indicate interaction between sulfide and silicate magma and crustal contamination; (4) PGE mineralization is effected by degree of partial melting of mantle; (5) Cu/Zr is efficient parameter to judge sulfide segregation; (6) The effects of multiple magma fractionation and emplacement are important, for inverse order shows the destruction to previous solid lithofacies and orebodies. Mati, Chuanzhu, Xiadong, Luodong, mafic-ultramafic intrusions are evaluated using evaluation system above. Remarkable Ni depletion is found in olivine of Mati, and southwest of the intrusion can be hopeful location for ore location. Chuanzhu intrusion has remarkable evidence of sulfide segregation, but the intrusion represents the narrow feeder conduit, so the wide part of the conduit maybe the favorite location for sulfide to deposit. The ore potential of Luodong and Xiadong is not good. Both the intrusions show no Ni depletion in olivine, and there is no sulfide in country rocks, so no crustal sulfur is added into the magmatic system. For Sidingheishan, a very large intrusion, the phenomenon of sulfide segregation is found, but there are no favorite places for sulfide to deposit. So the Cu-Ni ore potential maybe not good, but PGE mineralization should be evaluated further.
Resumo:
The petrology and geochemistry of peridotites entrained in Beiyan Cenozoic alkaline basalts within the middle segment of Tan-Lu fault zone and clinopyroxene megacrysts in the late Mesozoic and Cenozoic alkaline basaltic rocks from the North China Craton, have been systematically investigated. The main conclusions are obtained as follows. The peridotites entrained in alkaline basalts at Beiyan, Shandong Province, China are comprised of dominantly spinel lherzolites and spinel wehrlites with porphyroclastic, granuloblastic textures to resorption textures. The xenoliths are fertile in major element compositions (High CaO, TiO2, Low MgO, Cr2O3). The olivine Fo (= 100×Mg / (Mg+Fe) possesses a low and very large range of 81.0 to 91.0. The peridotites contain high percentages (Lherzolites: 10 - 19% in volume; Wehrlites: 24 - 28% in volume) of clinopyroxene with spongy textures. The Sr and Nd isotopic ratios of clinopyroxene separates from peridotites and pyroxenite xenoliths have a depleted and small range fall within the area of MORB, similar to newly-accreted lithospheric mantle. However, the appearance of many wehrlites and highly enriched LREE pattern suggest that this newly-accreted lithospheric mantle was considerably modified and reconstructed recently through the peridotite-asthenospheric melt interaction. The upwelling of asthenosphere from late Cretaceous to Eogene and upper mantle shearing of the Tan-Lu fault played an important role in the modification and reconstruction of the newly-accreted lithospheric mantle. The clinopyroxene megacrysts in the late Mesozoic and Cenozoic alkaline basaltic rocks from the eatern North China Craton are different in aspects of major elements, trace elements and isotopic composition. The characteristics of texture, mineral compositions and geochemistry as well as the Fe-Mg partitioning between the crystal and the melt indicates that the Al-augites in the Cenozoic basalts represent high-pressure crystallization products of alkaline basaltic melts. Thus, both of clinopyroxene megacrysts and host basalts could be derived from a same primitive magma. However, the Al-augites in the late Mesozoic basaltic rocks represent accidentally-included xenocrysts of basaltic components which had crystallized in the depth from a previously melting episode. The more depleted Sr-Nd isotopic compositions of Cenozoic megacrysts compared with those of host alkaline basalts and tholeiites demonstrate that even the alkali basalts could not completely represent primitive magma initiating in asthenosphere. That is to say, the Cenozoic alkaline basalts were more or less modified by some enriched Sr-Nd isotopic components during their eruption. Meanwhile, the tholeiites were not the products formed only by fractional crystallization of alkaline basaltic magma or different degrees of partial melting. It may result from the contribution of lithospheric mantle materials or crust contamination in magma chamber to alkali basaltic magmas.
Resumo:
The dissertation focuses on the petrology, geochemistry of the volcanic rocks in east Tibet and southeast Yunnan. It lucubrates the Magmatic process, forming mechanism and the possible tectonic settings of the volcanic rocks. The volcanic rocks of Nangqen basin in east Tibet, Qinghai province are mainly Cenozoic intermediate-acid shoshonites. The rocks are LREE enriched and the LREE/HREE = 3~34; (La/Yb)_N = 18.17-53.59, and ΣREE 222~1260μg/g. There are no Eu anomaly, and Nb, Ta, Zr, Hf, Ti are markedly depleted. The isotopic composition is ~(87)Sr/~(86)Sr = 0.70497~0.70614, ~(206)Pb/~(204)Pb = 18.622~18.974, ~(208)Pb/~(204)Pb = 38.431~38.996, ~(207)Pb/~(204)Pb = 15.511~15.613, respectively. K-Ar age of the whole rocks and the single mineral are between 32.0-36.5Ma. Based on the trace elements and isotopic elements, we get the conclusion that the partial melting is one of the dominated forming mechanisms for the volcanic rocks in Naneqen basin. The magma did not experience the crustal contamination en route to the surface; however, the complex mixture took place in the upper mantle before the melt was formed. There are at least two kinds of mixed sources that can be identified. The basalt in southeast Yunnan province is studied. They are distributed in Maguan, Tongguan, and Pingbian County, which is located on the both sides of the Red River belt, and the ultrabasic xenolith are cursory introduced. The volcanic rocks belongs to the alkali series, which can be subdivided into trachybasalt and basanite(Ol normal molecule >5). The volcanic rocks are characteristics by high Ti and low Mg#. According to the magma calculation model, the original rocks of the basalt in southeast Yunnan province are Spinel Lherzolite in Tongguan, Garnet Lherzolite in Pingbian and Maguan, while Togguan undergoes 2-5 percent and percent of partial melting, whereas volcanism in Maguan and Pingbian was so complex to calculate. The fractional crystallization took place during the magma evoltion in southeast Yunnan. The basalt is enriched in LREE with LREE/HREE=9.23-20.19. All of the trace elements display weak Nb, Ta peak, and the depletion of Zr, Hf and Ti in Maguan and pingbian represent the presence of Garnet in the source. The composition of the isotope ratio are ~(87)Sr/~(86)Sr = 0.70333-0.70427, ~(143)Nd/~(144)Nd = 0.512769-0.512940, ~(206)Pb/~(204)Pb = 18.104-18.424, ~(207)Pb/~(204)Pb = 15.483 -15.527; ~(208)Pb/~(204)Pb = 37.938-38.560, respectively, which shows the characteristics of the HIMU type OIB. The volcanic rocks of the southwest Yunnan are derived from the enriched, OIB type mantle sources by synthesizing all the data from trace and isotope elements. It is similar to that of the volcanic rocks in Hawaii, a typical kind of the mixtures of the recycled oceanic crust plume and depleted asthenosphere. To sum up, the volcanic rocks in southeast Yunnan are formed by the intraplate hotpot volcanism.
Resumo:
With the progress of prospecting, the need for the discovery of blind ore deposits become more and more urgent. To study and find out the method and technology for the discovery of blind and buried ores is now a priority task. New geochemical methods are key technology to discover blind ores. Information of mobile components related to blind ores were extracted using this new methods. These methods were tested and applied based on element' s mobile components migrating and enriched in geophysical-geochemical process. Several kinds of partial extraction techniques have tested based on element' s occurrence in hypergenic zone. Middle-large scale geochemical methods for exploration in forest and swamp have been tested. A serious of methods were tested and applied effetely about evaluation of regional geochemical anomaly, 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system instead of the normal net. 1. Element related with ores can be mobiled to migrate upwards and be absorpted by surface soil. These abnomal components can be concentrated by natural or artificial methods. These trace metalic ions partially exist in dissovlvable ion forms of active state, and partially have been absorbed by Fe-Mn oxide, soil and organic matter in the soil so that a series of reaction such as complex reaction have take place. Employing various partial extraction techniques, metallic ions related with the phase of the blind ores can be extracted, such as the technique of organic complex extraction, Fe-Mn oxide extraction and the extraction technique of metallic ions of various absorption phases. 2.1:200000 regional geochemical evaluation anomaly methods: Advantageous ore-forming areas were selected firstly. Center, concentration, morphological feature, belt of anomaly were choosed then. Geological and geochemical anomalies were combined. And geological and geochemical background information were restrained. Xilekuduke area in Fuyun sheet , Zhaheba area in Qiakuerte sheet, the west-north part in Ertai sheet and Hongshanzui anomaly in Daqiao sheet were selected as target areas, in Alertai, in the north of Xinjiang. in Xilekuduke area, 1:25000 soil geochemical methods sampling based on the net in dendritic water system was carried out. Cu anomaly and copper mineralization were determined in the center area. Au , Cu anomalies and high polarization anomaly were determined in the south part. Prospecting by primary halo and organic complex extraction were used to prognosis blind ore in widely rang outcrop of bedrock. 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system were used in transported overburden outside of mining area. Shallow seismic method and primary halo found a new blind orebody in mining area. A mineralization site was fou and outside of Puziwan gold mine, in the north of Shanxi province. Developing middle-large scale geochemical exploration method is a key technique based 1:200000 regional geochemical exploration. Some conditions were tested as Sampling density , distribution sites of sample, grain size of sample and occurrence of element for exploration. 1:50000 exploration method was advanced to sample clast sediment supplement clast sediment in valley. 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system was applied to sample residual material in A or C horizon. 1:2000 primary or soil halo methods used to check anomalies and determine mineralization. Daliang gold mineralization in the northern Moerdaoga was found appling these methods. Thermomagnetic method was tested in miniqi copper-polymetallic ore. Process methods such as grain size of sample, heated temperature, magnetic separating technique were tested. A suite of Thermomagnetic geochemical method was formed. This method was applied in Xiangshan Cu~Ni deposit which is cover by clast or Gobi in the eastern Xinjiang. Element's content and contrast of anomaly with Thermomagnetic geochemical method were higher than soil anomaly. Susceptibility after samples were heated could be as a assessment conference for anomaly. In some sectors thermo-magnetic Cu, Ni, Ti anomalious were found outside deposits area. There were strong anomal ies response up ore tested by several kind of partial extraction methods include Thermomagnetic, enzyme leach and other partial extractions in Kalatongke Cu-Ni deposit in hungriness area in the northern of Xinjiang. Element's anomalies of meobile were mainly in Fe-Mn oxide and salt. A Copper mineralization site in Xilekuduke anomaly area had been determined. A blind ore was foung by shallow seismic and geochemical method and a mineralization site was found outside this mining area in Puziwan gold deposit in shanxi province. A Gold mineralization site was found by 1:50000 geochemical exploration in Daliang, Inner Mongolia.