89 resultados para Realized volatility
Resumo:
提出了一种制作高频线性可变频率光栅的新方法,并给出了光栅空间频率的表达式.通过在相干的两光路中插入特殊透镜,可以实现线性可变空间频率光栅的制作,而且通过适当地调节实验参数可以改变空间频率的变化率.给出了相应的模拟全息图。
Resumo:
The control role of the relative phase between the probe and driving fields on gain, dispersion and populations in an open V-type three-level system with spontaneously generated coherence is studied. The result shows that by adjusting the value of the relative phase, the transformation between lasing with inversion and lasing without inversion (LWI) can be realized and high dispersion (refractive index) without absorption can be obtained. The shape and value range of the dispersion curve are similar to those of the gain curve, and this similarity is closely related to the relative phase. The effects of the atomic exit and injection rates and the incoherent pump rate on the control role of the relative phase are also analysed. It is found easier to get LWI by adjusting the value of the relative phase using the open system rather than the closed system, and using an incoherent pump rather than without using the incoherent pump. Moreover the open system can give a larger LWI gain than the closed system.
Resumo:
We studied effects of the relative phase between the probe and driving fields on the absorption and dispersion properties in an open three-level ladder system with spontaneously generated coherence but without incoherent pumping. It is shown that by the phase controlling, switching from absorption to lasing without inversion (LWI) and enhancing remarkablely LWI gain can be realized; large index of refraction with zero absorption and the electromagnetically induced transparency can be obtained. We also find that varying the atomic injection and exit rates has a considerable influence on the phase dependent-absorption property of the probe field, existent of the atomic injection and exit rates gives the necessary condition of the realization of LWI, getting LWI is impossible in the corresponding closed system without incoherent pumping. We studied effects of the relative phase between the probe and driving fields on the absorption and dispersion properties in an open three-level ladder system with spontaneously generated coherence but without incoherent pumping. It is shown that by the phase controlling, switching from absorption to lasing without inversion (LWI) and enhancing remarkablely LWI gain can be realized; large index of refraction with zero absorption and the electromagnetically induced transparency can be obtained. We also find that varying the atomic injection and exit rates has a considerable influence on the phase dependent-absorption property of the probe field, existent of the atomic injection and exit rates gives the necessary condition of the realization of LWI, getting LWI is impossible in the corresponding closed system without incoherent pumping.
Resumo:
On the basis of noncollinear optical parametric amplification in periodically poled lithium niobate (PPLN) which is realized by quasi-phase matching (QPM) technology, we consider the possibility of semi-noncollinear phase matching between collinear and noncollinear geometries by tilting a PPLN-crystal's parallel grating at a sure angle. Numerical simulation with proper parameters shows that we can achieve a broader optical parametric amplification (OPA) bandwidth than that of noncollinear geometry. About 121 nm at a signal wavelength of 800 and 70 nm at a signal wavelength of 1064 nm under optimal conditions are obtained when the crystal length is 9 mm.
Resumo:
A multiple-staged ion acceleration mechanism in the interaction of a circularly polarized laser pulse with a solid target is studied by one-dimensional particle-in-cell simulation. The ions are accelerated from rest to several MeV monoenergetically at the front surface of the target. After all the plasma ions are accelerated, the acceleration process is repeated on the resulting monoenergetic ions. Under suitable conditions multiple repetitions can be realized and a high-energy quasi-monoenergetic ion beam can be obtained.
Resumo:
We theoretically show that selection of a single quantum path in high-order harmonics generation can be realized in a few-optical-cycle regime with two-color schemes. We also demonstrate, in theory as well, the generation of spectrally smooth and ultrabroad extreme ultraviolet supercontinuum in argon gas which can produce single similar to 79 as pulses with currently available ultrafast laser sources. Our finding can be beneficial for generating isolated sub-100 as extreme ultraviolet pulses.
Resumo:
基于周期性极化铌酸锂晶体(PPLN)的准相位匹配光参变放大过程,通过倾斜周期极化铌酸锂晶体中极化域(极化光栅)一定角度,实现了介于共线匹配方式和非共线匹配方式之间的一种半非共线型准相位匹配方式,并以该匹配方式下的各光矢量几何关系得出相位匹配曲线,找到在特定抽运光和信号光波长下能获得宽带增益放大的周期极化长度。并研究其极化倾斜角度与温度特性。模拟计算表明,在合适的角度与温度条件下,该方式可以532 nm抽运光抽运的信号光在800 nm和1064 nm处均获得宽带光参变放大。
Resumo:
A new method of frequency-shifting for a diode laser is realized. Using a sample-and-hold circuit, the error signal can be held by the circuit during frequency shifting. It can avoid the restraint of locking or even lock-losing caused by the servo circuit when we input a step-up voltage into piezoelectric transition (PZT) to achieve laser frequency-shifting.
Resumo:
We demonstrate that the parametric resonance in a magnetic quadrupole trap can be exploited to cool atoms by using Bird's method. In our programme the parametric resonance was realized by anisotropically modulating the trap potential. The modulation frequency dependences of temperature and fraction of the trapped atoms are explored. Furthermore, the temperature after the modulation as functions of the modulation amplitude and the mean elastic collision time are also studied. These results are valuable for the experiment of parametric resonance in a quadrupole trap.
Resumo:
报道了一种具有高分辨率和高效且价廉的解调系统的光纤布拉格光栅(FBG)温度传感器。提出了光纤光栅的金属槽封装技术,以提高传感光栅的温度灵敏性。研究了金属槽封装光栅的温度灵敏性,理论分析和实验结果表明,封装光栅的温度灵敏系数比普通裸光栅提高了3.6倍。系统利用一长周期光栅(LPG)作为线性滤波器,宽带光源经此长周期光栅调制后入射到传感光栅,可解调布拉格传感光栅的波长位移。理论分析与实验结果一致,系统可达到的温度分辨率为0.02℃。
Resumo:
提出了一种能够测量高温的光纤布拉格光栅(FBG)传感器结构。利用线膨胀系数和长度均不同的两种金属细杆和光纤布拉格光栅设计而成的传感头,能够将被测温度转化为光栅的应变,解调由应变引起的光栅波长漂移,即可得知待测的温度。目前在实验室实现了500℃的动态范围和1℃的温度分辨率,实验结果与理论分析一致。
Resumo:
提出了一种用于合成孔径激光成像雷达的双向环路结构的发射接收望远镜,双向环路包括发射4-f转像系统、接收4-f转像系统和独立的望远镜。发射通道中设置离焦和相位调制平板偏置,接收通道中设置离焦和相位平板偏置。控制发射离焦量,发射相位调制函数,接收离焦量,接收相位调制函数,用同一个望远镜可以同时实现空间二次项相位附加偏置的激光发射和消除目标点散射回波接收波面像差的离焦光学接收,并产生雷达运动方向上合适的和可控制的相位二次项历程,从而实现孔径合成成像。详细介绍了系统设计,给出了从发射到光电外差接收的全过程传输方程。
Resumo:
通过在线形谐振腔中引入一段缠绕在压电陶瓷上的单模光纤作为正弦相位调制器,使得激射波长的损耗不固定,抑制由于掺铒光纤的均匀展宽效应引起的模式竞争,从而避免了在室温下不稳定的单波长激射,实现了多波长掺铒光纤激光器的稳定输出。为了获得平坦的多波长输出,在谐振腔里使用了一个损耗峰位于1530nm处的长周期光纤光栅,以获得较为平坦的增益谱。通过两个3dB耦合器制成的反射型梳状滤波器的滤波作用,实验中观察到稳定的多波长激射,相邻波长间隔约为0.45nm。中心9个波长的输出功率平坦度为10dB,边模抑制比大于25dB。
Resumo:
对紫外激光诱导近化学计量比钽酸锂晶体铁电畴反转进行了实验研究。波长为351 nm的连续紫外激光被聚焦在近化学计量比钽酸锂晶体的-z表面,同时沿与晶体自发极化相反的方向施加均匀外电场。实验证实紫外激光辐照可以有效地降低晶体畴反转所需的矫顽电场,采用数字全息干涉测量技术检测证实在激光辐照区域实现局域畴反转。研究表明采用紫外激光诱导可以实现对近化学计量比钽酸锂晶体铁电畴反转的局域控制。提出了物理机理的理论分析,认为外电场和激光辐照场的共同作用在晶体内部产生高浓度、大尺寸的缺陷结构,缺陷一定程度上降低畴体成核和畴
Resumo:
采用双中心记录方案在双掺杂LiNbO3∶Fe∶Rh晶体中实现了近红外非挥发全息记录,研究了LiNbO3∶Fe∶Rh晶体在633 nm,752 nm,799 nm波长下的全息记录性能。结果表明,在使用近红外记录光时,其记录灵敏度随敏化光强的变化趋势与双中心短波长记录时的不同。通过和LiNbO3∶Fe∶Mn等传统双掺杂铌酸锂晶体的近红外波段记录效果对比,发现同时掺杂Fe和Rh可增强晶体对近红外光的吸收,获得更高的浅中心Fe光生伏特系数,从而能够在LiNbO3∶Fe∶Rh晶体中实现近红外波段的光折变全息记录。