138 resultados para ROCAGLAMIDE DERIVATIVES
Resumo:
By selecting polyfluorene as the polymer host, choosing 2,1,3-benzothiadiazole derivative moieties as the red dopant units and covalently attaching 0.3 mol% of the dopant units to the side chain of the polymer host, we developed a novel series of red electroluminescent polymers of dopant/host system with molecular dispersion feature. Their EL spectra exhibited predominant red emission from the dopant units because of the energy transfer and charge trapping from the polymer backbone to the dopant units. The emission wavelength of the polymers could be tuned by modifying the chemical structures of the dopant units.
Resumo:
During the reaction of reduced C-60 with benzyl bromide in benzonitrile, a novel cis-1 C-60 adduct, 1,4-dibenzyl-2,3-cyclic phenylimidate C-60 (1), Was obtained rather than the expected product of 1,4-dibenzyl C-60. The structure of compound 1 was analyzed by X-ray single-crystal diffraction, identifying the presence of a five-membered heterocycle at a [5,6] bond of C-60. One of the heteroatoms is assigned as a nitrogen atom; however, the identity of the other heteroatom cannot be determined unambiguously by crystallography due to similarity between the nitrogen and oxygen atoms.
Resumo:
This work presents the salen-Co(II) complex catalyzed enantioselective iodolactonizations of various 4-pentenoic acid derivatives with good enantioselectivities (up to 83% ee).
Resumo:
The ferrocene-functionalised thiophene derivatives (TFn) with different length of oxyethylene chains were synthesized and polymerized chemically with iron (III) chloride as an oxidant. The resulting ferrocene-functionalised polythiophenes (PTFn) show good solubility in most solvents, such as chloroform (CHCl3) tetrahydrofuran (THF), acetone, etc. The structure and properties of the PTFn polymers were confirmed by IR, H-1 NMR, AFM and photoluminescence (PL). The polymers PTFn show good redox activity with no attenuation of the electroactivity after multiple potential cycling. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The rational design, synthesis and characterization of five phosphorescent platinum complexes [(C boolean AND N) Pt(acac)] [Hacac = acetylacetone, HC boolean AND N = 1-methyl-2-(4-fluorophenyl)benzoimidazole (H-FMBI), 1-methyl-2-phenylbenzoimidazole (H-MBI), 1,2-diphenyl-benzoimidazole (H-PBI), 1-(4-(3,6-di-t-butylcarbazol-9-yl)) phenyl-2-phenylbenzoimidazole (t-BuCz-H-PBI), and 1-(4-(3,6-di-(3,6-di-t-butyl-carbazol-9-yl))carbazol-9-yl) phenyl-2-phenylbenzoimidazole (t-BuCzCz-H-PBI)] have been discussed. The crystal structure of (MBI) Pt(acac) shows a nearly ideal square planar geometry around Pt atom and the weak intermolecular interactions with pi-pi spacing of 3.55 angstrom. All of the complexes emit green phosphorescence from the metal-to-ligand charge-transfer (MLCT) excited state with high quantum efficiency (0.08-0.17) at room temperature.
Resumo:
Two simple triphenylamine/oxadiazole derivatives were synthesized and fully characterized; their multifunctionality as highly efficient non-doped blue fluorescence, excellent red phosphorescent host and single-doped two-color based white OLEDs has been demonstrated.
Resumo:
The asymmetric Michael addition of aldehydes to nitroolefins was investigated using L-prolinamide derivatives of 2-(2'-piperidinyl)pyridine as catalyst and a variety of phenols as co-catalyst. Extensive screening toward the effect of prolinamides, phenols, and solvents on this transformation revealed that a combination of (S)-2-(2'-piperidinyl)pyridine-derived trans-4-hydroxy-L-prolinamide 2c, (S)-1,1'-bi-2-naphthol, and dichloromethane was a promising system. This system was shown to be amenable to a rich variety of aldehydes and nitroolefins and afforded the nitroaldehyde products with excellent yield, enantiomeric excess (up to 99%) and diastereoselectivity ratio (up to 99/1), even in the case of 1 mol % catalyst loading and 1.5 equiv of aldehydes.
Resumo:
The quinacridone derivatives N,N'-dialkyl-1,3,8,10-tetramethylquinacridone (CnTMQA, n = 6, 10, 14) were used as building blocks to assemble luminescent nano- and microscale wires. It was demonstrated that CnTMQA with different lengths of alkyl chains display obviously different wire formation properties. C10TMQA and C14TMQA showed a stronger tendency to form 1-D nano- and microstructures compared with C6TMQA. The C10TMQA molecules could be employed to fabricate the wires with different diameters, which exhibited a size-dependent luminescence property. The emission spectrum of the C10TMQA wires with diameters of 200-500 nm shows a broad emission band at 560 nm and a shoulder at around 535 nm, while the emission spectrum of the C10TMQA wires with diameters of 2-3 mu m reveals a narrower emission band at 563 nm. For the CnTMQA-based samples with different morphologies, the emission property change tendency agrees with that of the powder X-ray diffraction patterns of these samples.
Resumo:
Four single polymers with two kinds of attachment of orange chromophore to blue polymer host for white electroluminescence (EL) were designed. The effect of the side-chain attachment and main-chain attachment on the EL efficiencies of the resulting polymers was compared. The side-chain-type single polymers are found to exhibit more efficient white EL than that of the main-chain-type single polymers. Based on the side-chain-type white single polymer with 4-(4-alkyloxy-phenyl)-7-(4-diphenylamino-phenyl)-2,1,3-benzothiadiazoles as the orange-dopant unit and polyfluorene as the blue polymer host, white EL with simultaneous orange (lambda(max) = 545 nm) and blue emission (lambda(max) = 432 nm/460 nm) is realised. A single-layer device (indium tin oxide/poly(3,4-ethylenedioxythiophene)/polymer/Ca/Al) made of these polymers emits white light with the Commission Internationale de l'Eclairage coordinates of (0.30,0.40), possesses a turn-on voltage of 3.5 V, luminous efficiency of 10.66 cd A(-1), power efficiency of 6.68 lm W-1, and a maximum brightness of 21240 cd m(-2).
Resumo:
Five zinc (II) complexes (1-5) with 4 '-phenyl-2,2 ':6 ',2 ''-terpyridine (ptpy) derivatives as ligands have been synthesized and fully characterized. The para-position of phenyl in ptpy is substituted by the group (R), i.e. tert-butyl (t-Bu), hexyloxy (OHex), carbazole-9-yl (Cz), naphthalen-1-yl-phenyl-amine-N-yl (NPA) and diphenyl amine-N-yl (DPA), with different electron-donating ability. With increasing donor ability of the R, the emission color of the complexes in film was modulated from violet (392 nm) to reddish orange (604 nm). The photoexcited luminescence exhibits significant solvatochromism because the emission of the complexes involves the intra-ligand charge transfer (ILCT) excited state. The electrochemical investigations show that the complexes with stronger electro-donating substituent have lower oxidation potential and then higher HOMO level. The electroluminescence (EL) properties of these zinc (II) complexes were studied with the device structure of ITO/PEDOT/Zn (II) complex: PBD:PMMA/BCP/AlQ/ LiF/Al. Complexes 3, 4 and 5 exhibit EL wavelength at 552, 600 and 609 nm with maximum current efficiency of 5.28, 2.83 and 2.00 cd/A, respectively.
Resumo:
This article presents the state of the art of analytical applications of the electrochemiluminescence (ECL) of tris (2,2'-bipyridyl) ruthenium (Ru(bpy)(3)(2+)) and its derivatives. in the last seven years, Ru(bpy)(3)(2+) ECL has attracted much interest from analysts and been successfully exploited as a detector of flow injection analysis (FIA), high-performance liquid chromatography (HPLC), capillary electrophoresis (CE), and micro total analysis systems (TAS). Immobilization of Ru(bPY)(3)(2+) on a solid surface provides several advantages over the solution-phase ECL procedure, such as the simplicity of experimental design and cost-effectiveness. After a brief discussion of the mechanism of Ru(bpy)(3)(2+) ECL, we discuss its applications in FIA, HPLC, CE and TAS and give special attention to the design of Ru(bpy)(3)(2+) ECL cells and some immobilization techniques of Ru(bpy)(3)(2+); we focus on papers published after 1997.
Resumo:
Triphenyl pyrazoline derivatives (TPPs) bearing electron withdrawing and pushing substitutents were synthesized. Their photoluminescence (PL) properties in the solution and doped in poly(N-vinylcarbazole) (PVK) thin films were investigated. When TPPs were doped into PVK films the photoluminescence intensity was enhanced with increasing TPPs concentration. It indicated that the energy transfer from PVK to TPPs has happened. Double and three-layer electroluminescence (EL) devices based on PVK doped with TPPs as an active layer were fabricated and investigated and the electroluminescent mechanism was followed by energy transfer from PVK to TPPs. The pyrazoline derivative with both electron withdrawing and pushing substituents was the optimistic candidate for electroluminescent emitter due to higher transfer efficiency from electric energy to light energy as well as larger luminance.
Resumo:
Synergistic extraction of zinc(IT) and cadmium(11) from hydrochloric acid solution with primary amine N1923 and neutral organophosphorus derivatives Cyanex 923 and Cyanex 925 is the focus of this paper. Extraction mechanisms are discussed as well as how the acidity of the aqueous phase, the composition of the organic phase, and the experimental temperature affect the rates of extraction of metal ions. Differences between synergistic efficiency of Zn(II) and Cd(II) with mixtures of primary amines N1923 and either Cyanex 923 or Cyanex 925 are observed. The equilibrium constants, the composition, and the formation constants of the extracted complexes as well as the values of the thermodynamic functions are calculated. According to the synergy coefficient formula, the synergy effect on the extraction of Zn(II) is in the following order:N1923 + Cyanex 925 > N1923 + Cyanex 923 This order is reversed in the case of cadmium(II). For the same synergistic system, the extraction rate follows the order: Zn(II) > Cd(II). Furthermore, the stereochemical structures of the various extractants and their effect on metal ion extraction rate are also investigated.