59 resultados para RADIATION SOURCE IMPLANTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear Thomson backscattering of an intense Gaussian laser pulse by a counterpropagating energetic electron is investigated by numerically solving the electron equation of motion taking into account the radiative damping force. The backscattered radiation characteristics are different for linearly and circularly polarized lasers because of a difference in their ponderomotive forces acting on the electron. The radiative electron energy loss weakens the backscattered power, breaks the symmetry of the backscattered-pulse profile, and prolongs the duration of the backscattered radiation. With the circularly polarized laser, an adjustable double-peaked backscattered pulse can be obtained. Such a profile has potential applications as a subfemtosecond x-ray pump and probe with adjustable time delay and power ratio. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, we start from Lagrange equation and analyze theoretically the electron dynamics in electromagnetic field. By solving the relativistic government equations of electron, the trajectories of an electron in plane laser pulse, focused laser pulse have been given for different initial conditions. The electron trajectory is determined by its initial momentum, the amplitude, spot size and polarization of the laser pulse. The optimum initial momentum of the electron for LSS (laser synchrotron source) is obtained. Linear polarized laser is more advantaged than circular polarized laser for generating harmonic radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray phase imaging with illumination by a partially coherent source with a setup similar to in-line holography is considered. Using the optical transform function, we consider the effects of partial coherence on this x-ray phase imaging for a weak phase object. The optimal contrast and the resolution of phase imaging are analyzed. As the coherence decreases, the imaging contrast and the optimal contrast frequency decrease, and the resolution degrades. It is shown that this contrast-enhanced phase-imaging method can be regarded as a linear bandpass filter and that the bandwidth and the image contrast are changeable. The frequency property of the imaging system can be improved if an incoherent x-ray source with the proper shape is used. (C) 1999 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical model of direct diffraction phase-contrast imaging with partially coherent x-ray source is expressed by an operator of multiple integral. It is presented that the integral operator is linear. The problem of its phase retrieval is described by solving an operator equation of multiple integral. It is demonstrated that the solution of the phase retrieval is unstable. The numerical simulation is performed and the result validates that the solution of the phase retrieval is unstable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial longitudinal coherence length (SLCL), which is determined by the size of and the distance from the source, is introduced to investigate the longitudinal resolution of lensless ghost imaging. Its influence is discussed quantitatively by simulation. The discrepancy of position sensitivity between Scareelli et al. [Appl. Phys. Lett. 88, 061106 (2006)] and Basano and Ottonello [Appl. Phys. Lett. 88, 091109 (2006)] is clarified. (C) 2008 Optical Society of America.