65 resultados para Proto-Oncogene Proteins c-myc
Resumo:
Quantitative electrochemilumineseence (ECL) detection of a model protein, bovine serum albumin (BSA) was achieved via biotin-avidin interaction using an avidin-based sensor and a well-developed ECL system of tris(2,2'-bipyridine) ruthenium(II) derivative as label and tri-n-propylamine (TPA) as coreactant. To detect the protein, avidin was linked to the glassy carbon electrode through passive adsorptions and covalent interaction with carboxylate-terminated carbon nanotubes that was used as binder to immobilize avidin onto the electrode. Then, biotinylated BSA tagged with tris(2,2'-bipyridine) ruthenium(II) label was attached to the prepared avidin surface.
Resumo:
It was found that silicon dioxide (SiO2) nanoparticles modified onto glassy carbon (GC) electrode exhibited a dramatic promotion on the direct electron transfer of Cytochrome c (Cyt c). The corresponding mechanism was discussed based on the electrochemical characteristics and a spatial geometrical model of the bifunctional structure. The model could offer insight to the study of biosensors and bioreactors without chemical mediator and serve as a basis for their fabrication. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6'-phosphatehexyl)fluorene-alt-1,4-phenylene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well soluble in water with a strong blue fluorescence emission. Effect of the side chain length on fluorescence sensory properties was studied by comparing quenching efficiencies toward different quenchers of PFHPNa with a reported polymer poly(9,9-bis(3'-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPPNa), which have different side chains in length. For small molecular quenchers (methylviologen, MV2+) and meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4), polymer PFHPNa had lower sensitivity due to the much longer side chain length. The positively charged metalloprotein cytochrome c could quench fluorescence of conjugated polymers via energy transfer and electron transfer.
Direct electrochemistry behavior of Cytochrome c on silicon dioxide nanoparticles-modified electrode
Resumo:
A newfangled direct electrochemistry behavior of Cytochrome c (Cyt c) was found on glassy carbon (GC) electrode modified with the silicon dioxide (SiO2) nanoparticles by physical adsorption. A pair of stable and well-defined redox peaks of Cyt c ' quasi-reversible electrochemical reaction were obtained with a heterogeneous electron transfer rate constant of 1.66 x 10(-3) cm/s and a formal potential of 0.069 V (vs. Ag/AgCl) (0.263 V versus NHE) in 0.1 mol/L pH 6.8 PBS. Both the size and the amount of SiO2 nanoparticles could influence the electron transfer between Cyt c and the electrode. Electrostatic interaction which is between the negative nanoparticle surface and positively charged amino acid residues on the Cyt c surface is of importance for the stability and reproducibility toward the direct electron transfer of Cyt c. It is suggested that the modification of SiO2 nanoparticles proposes a novel approach to realize the direct electrochemistry of proteins.
Resumo:
The redox-induced conformational equilibrium of cytochrome c (cyt c) adsorbed on DNA-modified metal electrode and the interaction mechanism of DNA with cyt c have been studied by electrochemical, spectroscopic and spectroelectrochemical techniques. The results indicate that the external electric field induces potential-dependent coordination equilibrium of the adsorbed cyt c between its oxidized state (with native six-coordinate low-spin and non-native five-coordinate high-spin heme configuration) and its reduced state (with native six-coordinate low-spin heme configuration) on DNA-modified metal electrode. The strong interactions between DNA and cyt c induce the self-aggregation of cyt c adsorbed on DNA. The orientational distribution of cyt c adsorbed on DNA-modified metal electrode is potential-dependent, which results in the deviation from an ideal Nernstian behavior of the adsorbed cyt c at high electrode potentials. The electric-field-induced increase in the activation barrier of proton-transfer steps attributed to the rearrangement of the hydrogen bond network and the self-aggregation of cyt c upon adsorption on DNA-modified electrode strongly decrease the interfacial electron transfer rate.
Resumo:
Fully sulfonated polyaniline nano-particles, nano-fibrils and nano-networks have been achieved for the first time by electrochemical homopolymerization of orthanilic acid using a three-step electrochemical deposition procedure in a mixed solvent of acetonitrile (ACN) and water. The diameter of the uniform nano-particles is about 60nm, and the nano-fibrils can be organized in two-dimensional (21)) or three-dimensional (313) non-periodic networks with good electrical contact. Average distance between contacts is about 850 and 600 nm for a 2D and 3D system, respectively. The details of the poly(orthanilic acid) (POA) nano-structure were examined with a field emission scanning electron microscope (SEM). The structure and properties of POA were characterized with FTIR, UV-vis and electrochemical methods. The 3D POA nano-networks coated platinum electrode gave a direct electrochemical behavior of horse heart cytochrome c (Cyt c) immobilized on this electrode surface, a pair of well-defined redox waves with formal potential (E-ol) of -0.032 V (versus Ag/AgCl) was achieved. The interaction between Cyt c and POA makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods were used to investigate the interaction of Cyt c with POA.
Resumo:
The structural stability and redox properties of yeast iso-1-cytochrome c and its mutant, F82H, were studied by surface-enhanced resonance Raman scattering (SERRS) spectroscopy. Phenylalanine, which exists at the position-82 in yeast iso-1-cytochrome c, is replaced by histidine in the mutant. The SERRS spectra of the proteins on the bare silver electrodes indicate that the mutant possesses a more stable global structure with regard to the adsorption-induced conformational alteration. The redox potential of the mutant negatively shifts by about 400 mV, relative to that of yeast iso-1-cytochrome c. This is ascribed to axial ligand switching and higher solvent accessibility of the heme iron in the mutant during the redox reactions.
Circular dichroism and resonance Raman comparative studies of wild type cytochrome c and F82H mutant
Resumo:
The UV-visible, circular dichroism (CD), and resonance Raman (RR) spectra of the wild type yeast iso-1-cytochrome c (WT) and its mutant F82H in which phenylalanine-82 (Phe-82) is substituted with His are measured and compared for oxidized and reduced forms. The CD spectra in the intrinsic and Soret spectral region, as well as RR spectra in high, middle, and low frequency regions, are discussed. From the analysis of the spectra, it is determined that in the oxidized F82H the two axial ligands to the heme iron are His-18 and His-82 whereas in the reduced form the sixth ligand switches from His-82 to Met-80 providing the coordination geometry similar to that of WT. Based on the spectroscopic data, the conclusion is that the porphyrin macrocycle is less distorted in the oxidized F82H compared to the oxidized WT. Similar distortions are present in the reduced form of the proteins. Frequency shifts of Raman bands, as well as the decrease of the or-helix content in the CD spectra, indicate more open conformation of the protein around the heme. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The electrochemistry of disulfide in cytochrome c on gold electrodes was reported. The observed electrochemical response was used to explain why the electrochemical reaction of cytochrome c is irreversible at gold electrodes. Disulfide bonds in cytochrome c were strongly adsorbed onto the surface of gold electrodes and caused slow rate of electron transfer of the heme group. It was found that the presence of disulfides in cytochrome c was responsible for the lack of electrochemical response of the heme group on a gold electrode. The mechanisms for this effect were studied using electrochemistry and photoelectron spectroscopy. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The dynamic states of cytochrome c multilayers on electrochemically pretreated highly oriented pyrolytic graphite (HOPG) have been studied by in-situ scanning tunnelling microscopy (STM) under potential control of both the tip and the substrate in cytochrome c and phosphate buffer solution. The dynamic characterization of cytochrome c multilayers and relatively stable adsorbed single cytochrome c molecules scattered on HOPG imply that physically adsorbed multilayers were more easily influenced by the STM tip than those of chemically adsorbed single molecules. In-situ STM images of chemically adsorbed cytochrome c molecules with discernible internal structures on HOPG revealed that morphologies of cytochrome c molecules also suffered tip influence; possible tip-sample-substrate interactions have been discussed.
Resumo:
The changes of the synchronous fluorescence spectra and the electrochemical behaviour of cytochrome c with the urea concentration are studied. It has been found that with the increase of urea concentration, there occur sequentially the deaggregation of cytochrome c molecules, the increase of exposure extent of the heme group to the solvent, the disruption of Fe-S bond of the heme group and the change in the electrochemical behaviour of cytochrome c. It is suggested that the reason why the electrochemical reaction of cytochrome c is irreversible is that cytochrome c molecules exist in the concentrated solution as oligomers which are electrochemically inactive.
Resumo:
The monolayer of cytochrome c oxidase maintaining physiological activity and attached covalently to the self-assembled monolayers of 3-mercaptopropionic acid (MPA) on a gold electrode was obtained. The results of cyclic voltammetry show that direct electron transfer between cytochrome c oxidase and the electrode surface is a fast and diffusionless process. MPA has a dual role as both electrode modifier and the bridging molecule which: keeps cytochrome c oxidase at an appropriate orientation without denaturation and enables direct electron transfer between the protein and the modified electrode. Immobilized cytochrome c oxidase exhibits biphasic phenomena between the concentration of the electrolyte and the normal potentials; meanwhile its electrochemical behavior is also influenced by the buffer components. The quasi-reversible electron transfer process of cytochrome c oxidase with formal potential 385 mV vs. SHE in 5mM phosphate buffer solution (pH 6.4) corresponds to the redox reaction of cyt a(3) in cytochrome c oxidase, and the heterogeneous electron transfer rate constant obtained is 1.56 s(-1). By cyclic voltammetry measurements, it was observed that oxidation and reduction of cytochrome c in solution were catalyzed by the immobilized cytochrome c oxidase. This cytochrome c oxidase/MPA/Au system provides a good mimetic model to study the physiological functions of membrane-associated enzymes and hopefully to build a third-generation biosensor without using a mediator.
Resumo:
The electrochemistry of cytochrome c was studied at the PVP-modified gold electrode. It was found that the promoter effect is related to the amount of PVP at the gold electrode. From our results, it can be seen that the nitrogen element in the polymer is important for accelerating the electron transfer of cytochrome c.
Resumo:
The promoter effect of halogen anions for heterogeneous electron transfer between cytochrome c and a gold electrode was studied. It was found that the order of the promoter ability of halogen anions is I- > Br- > Cl- > F-. In addition, factors which can affect the promoter effect were discussed.