35 resultados para Product life cycle
Resumo:
紫菜是一类海洋藻类研究的模式系统,具有重要的经济价值和理论研究意义。本研究基于紫菜的世代交替生活史,对其壳孢子萌发过程进行了研究,并对丝状孢子体与叶状配子体的世代差异进行了分析,主要包括以下三部分: 1) 对紫菜丝状孢子体与叶状配子体的连接枢纽——壳孢子的发育过程及其光影响进行了研究与讨论,发现壳孢子只有在附着后才能形成细胞壁并发育,说明壳孢子的附着是触发了壳孢子细胞壁的形成以及后期发育的开关,亦即附着是触发紫菜世代交替过程中配子体转录组表达的开关;纤维素酶和果胶酶均能抑制壳孢子附着,但影响机制各不相同,推测果胶质主要介导壳孢子的初始附着,而纤维素则与永久附着相关;波长≥580 nm的高强度(200 μmol•m-2•s-1)可见光有利于壳孢子早期发育。 2) 结合现有藻类数据,对坛紫菜丝状孢子体阶段11000 EST数据进行了大规模的生物信息学分析,结果首次发现坛紫菜丝状孢子体中可能存在PCK型C4光合固碳途径,并筛选出44条在紫菜孢子体中表达上调的代表基因。 3) 结合坛紫菜、条斑紫菜、海带和红毛菜,对红藻和褐藻等大型海藻孢子体与配子体阶段代表基因Rubisco的表达与羧化酶活性差异进行了研究分析,结果表明Rubisco的表达量和初始羧化酶活在其配子体中均显著高于其孢子体世代,即与藻体不同世代的相对复杂度无关,而与染色体倍性相关,说明Rubisco的世代差异极有可能与染色体倍性相连锁,因而可能是海藻世代交替过程中的重要功能基因。
Resumo:
红毛菜(Bangia Lyngb.)属于红藻门,与紫菜属同属红毛菜科,其味道和营养都优于紫菜。目前红毛菜栽培产业已在我国福建莆田展开,但栽培技术还有待提高。海藻栽培技术的发展和成熟依赖于对其生长发育过程的认识。本研究针对红毛菜发育过程及相关光合生理展开,并初步探讨了一采自山西娘子关泉淡水红毛菜群体(FWB)的系统地位。 色素突变标记的壳孢子萌发特征表明最初两次分裂产生的4细胞决定了完整植株的形态建成。成熟植株,为雌雄异体。雌性生殖器果胞的标志性分化结构为原始受精丝,环境因子是促发原始受精丝发展的外部因素,其膨大程度随受精的延迟而增大。原孢子是主要的无性生殖孢子类型,在不良环境中,藻体也会形成内生孢子或休眠包囊,或者藻体断裂后重新形成完整的植株。 红毛菜的生长发育很大程度上受环境因子的控制。高温不利于配子体的发育,15-20 ºC比较适宜。红毛菜无性繁殖的最适温度-光照组合为20 ºC-8 h,有性繁殖为15 ºC-12h。 不同发育阶段,PSII实际光合效率(Y(II))与细胞的健康状况以及光合器官完整性及其在细胞内的分布有关,而与细胞的类型关系不大。健康的假根细胞、已分化未成熟的精子以及果孢子细胞均具有很高的Y(II)。色素体由中间位变为围周位,中央大液泡(营养藻丝)和大小纤维囊泡(成熟孢子与精子)的产生,使得细胞Y(II)降低。刚放散的壳孢子Y(II)很低,说明在壳孢子由贝壳基质释放到自由水体过程,光合作用受到一定程度抑制;而2h后,Y(II)开始恢复,rbcL的转录水平非常高,为孢子的萌发储备物质和能量需求。 在失水和低盐胁迫下,藻体均维持较高的Y(II)。干出处理至藻体重量不再变化,复水后Y(II)可回复初始水平。海生红毛菜在100%淡水培养基中(约20ºC)培养7天后,部分雄性藻体依然活着。从而体现了红毛菜位居高潮带的生理优势。 FWB终生行无性繁殖,藻体形态与发生以及染色体数目(4条)与海生群体没有区别。而rbcL-rbcS Spacer序列显示,红毛菜海生群体(无性和有性)具有完全相同的序列,而FWB与它们有5bp差异,但是与欧洲、北美地区的淡水群体仅1bp不同,初步说明所有淡水红毛菜群体具有共同的原始起源。
Resumo:
The small mysid crustacean Neomysis awatschensis was collected in the west coast of Jiaozhou Bay, Qingdao, China in 1992 and acclimated and cultured in laboratory conditions since then. Standard acute toxicity tests using 4-6 d juvenile mysids of this species were conducted and the results were compared with Mysidopsis bahia, a standard toxicity test organism used in the US in terms of their sensitivities to reference toxins, as well as their taxonomy, morphology and geographic distributions. Because of its wide distribution along the Chinese coast, similar sensitivity to pollutants as M. bahia, short life history, small size and the case of handling, this study intended to use N. awatschensis as one of the standard marine organisms for toxicity testing in China. The species were applied to acute toxicity evaluations of drilling fluid and its additives I organotin TPT and toxic algae, and to chronic ( life cycle) toxicity assays of organotin TPT and a toxic dinofalgellate Alexandrium tamarense, respectively. Using N, awatschensis as a standard toxicity testing organism in marine pollution assessment in China is suggested.
Resumo:
Apostichopus japonicus is a common sea cucumber that undergoes seasonal inactivity phases and ceases feeding during the summer months. We used this sea cucumber species as a model in which to examine phenotypic plasticity of the digestive tract in response to food deprivation. We measured the body mass, gross gut morphology and digestive enzyme activities of A. japonicus before, during, and after the period of inactivity to examine the effects of food deprivation on the gut structure and function of this animal. Individuals were sampled semi-monthly from June to November (10 sampling intervals over 178 days) across temperature changes of more than 18 degrees C. On 5 September, which represented the peak of inactivity and lack of feeding, A. japonicus decreased its body mass, gut mass and gut length by 50%, 85%, and 70%, respectively, in comparison to values for these parameters preceding the inactive period. The activities of amylase, cellulase and lipase decreased by 77%, 98%, and 35% respectively, in comparison to mean values for these enzymes in June, whereas pepsin activity increased two-fold (luring the inactive phase. Alginase and trypsin activities were variable and did not change significantly across the 178-day experiment. With the exception of amylase and cellulase, all body size indices and digestive enzyme activities recovered and even surpassed the mean values preceding the inactive phase during the latter part of the experiment (October-November). Principal Component Analysis (PCA) utilizing the digestive enzyme activity and body size index data divided the physiological state of this cucumber into four phases: an active stage, prophase of inactivity peak inactivity, and a reversion phase. These phases are all consistent with previously suggested life stages for this species, but our data provide more defined characteristics of each phase. A. japonicus clearly exhibits phenotypic plasticity (or life-cycle staging) of the digestive tract during its annual inactive period. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Fuel cell vehicles (FCVs) offer the potential of ultra-low emissions combined with high efficiency. Proton exchange membrane (PEM) fuel cells being developed for vehicles require hydrogen as a fuel. Due to the various pathways of hydrogen generation, both onboard and off-board, the question about which fuel option is the most competitive for fuel cell vehicles is of great current interest. In this paper, a life-cycle assessment (LCA) model was made to conduct a comprehensive study of the energy, environmental, and economic (3E) impacts of FCVs from well to wheel (WTW). In view of the special energy structure of China and the timeframe, 10 vehicle/fuel systems are chosen as the study projects. The results show that methanol is the most suitable fuel to serve as the ideal hydrogen source for fuel cell vehicles in the timeframe and geographic regions of this study. On the other hand, gasoline and pure hydrogen can also play a role in short-term and regional applications, especially for local demonstrations of FCV fleets. (c) 2004 Elsevier B.V All rights reserved.