47 resultados para Polynomial Approximation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The empirical pseudopotential method within the virtual crystal approximation is used to calculate the band structure of Mg1-xZnySySe1-y, which has recently been proved to be a potential semiconductor material for optoelectronic device applications in the blue spectral region. It is shown that MgZnSSe can be a direct or an indirect semiconductor depending on the alloy composition. Electron and hole effective masses are calculated for different compositions. Polynomial approximations are obtained for both the energy gap and the effective mass as functions of alloy composition at the GAMMA valley. This information will be useful for the future design of blue wavelength optoelectronic devices as well as for assessment of their properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To save finite-difference time-domain(FDTD) computing time, several methods are proposed to convert the time domain FDTD output into frequency domain. The Padé approximation with Baker's algorithm and the program are introduced to simulate photonic crystal structures. For a simple pole system with frequency 160THz and quality factor of 5000,the intensity spectrum obtained by the Padé approximation from a 28-item sequence output is more exact than that obtained by fast Fourier transformation from a 220-item sequence output. The mode frequencies and quality factors are calculated at different wave vectors for the photonic crystal slab from a much shorter FDTD output than that required by the FFT method,and then the band diagrams are obatined. In addition,mode frequencies and Q-factors are calculated for photonic crystal microcavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energy-weighted sum rule m(-1) and the centroid energy of the ISGMR in Sn-120 and Pb-208 are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we perform systematic calculations on low-lying states of 33 nuclei with A=202-212, using the nucleon pair approximation of the shell model. We use a phenomenological shell-model Hamiltonian that includes single-particle energies, monopole and quadrupole pairing interactions, and quadrupole-quadrupole interactions. The building blocks of our model space include one J=4 valence neutron pair, and one J=4,6,8 valence proton pair, in addition to the usual S and D pairs. We calculate binding energies, excitation energies, electric quadrupole and magnetic dipole moments of low-lying states, and E2 transition rates between low-lying states. Our calculated results are reasonably consistent with available experimental data. The calculated quadrupole moments and magnetic moments, many of which have not yet been measured for these nuclei, are useful for future experimental measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed, where the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single-particle Green's function technique. The full consistency of the calculations is achieved that the same effective Lagrangian is adopted for the ground state and the excited states. The negative energy states in the Dirac sea are also included in the single-particle Green's function in the no-sea approximation. The currents from the vector meson and photon exchanges and the Coulomb interaction in RCRPA are treated exactly. The spin-orbit interaction is included naturally in the relativistic frame. Numerical results of the RCRPA are checked with the constrained relativistic mean-field theory. We study the effects of the inconsistency, particularly the currents and Coulomb interaction in various collective multipole excitations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fully consistent relativistic continuum random phase approximation (RCRPA) has been constructed in the momentum representation in the first part of this paper. In this part we describe the numerical details for solving the Bethe-Salpeter equation. The numerical results are checked by the inverse energy weighted sum rules in the isoscalar giant monopole resonance, which are obtained from the constraint relativistic mean field theory and also calculated with the integration of the RCRPA strengths. Good agreement between the misachieved. We study the effects of the self-consistency violation, particularly the currents and Coulomb interaction to various collective multipole excitations. Using the fully consistent RCRPA method, we investigate the properties of isoscalar and isovector collective multipole excitations for some stable and exotic from light to heavy nuclei. The properties of the resonances, such as the centroid energies and strength distributions are compared with the experimental data as well as with results calculated in other models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed in terms of the Green's function technique. In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function, which includes also the negative states in the Dirac sea in the nose aapproximation. The theoretical formalism of RCRPA and numerical details are presented. The single particle Green's function is calculated numerically by a proper product of regular and irregular solutions of the Dirac equation. The numerical details and the formalism of RCRPA in the momentum representation are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microregion approximation explicit finite difference method is used to simulate cyclic voltammetry of an electrochemical reversible system in a three-dimensional thin layer cell with minigrid platinum electrode. The simulated CV curve and potential scan-absorbance curve were in very good accordance with the experimental results, which differed from those at a plate electrode. The influences of sweep rate, thickness of the thin layer, and mesh size on the peak current and peak separation were also studied by numerical analysis, which give some instruction for choosing experimental conditions or designing a thin layer cell. The critical ratio (1.33) of the diffusion path inside the mesh hole and across the thin layer was also obtained. If the ratio is greater than 1.33 by means of reducing the thickness of a thin layer, the electrochemical property will be far away from the thin layer property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of muffin-tin approximation on energy band gap was studied using LMTO-ASA (Linear Muffin-Tin Orbital-Atomic Sphere Approximation) approach. Since the diverse data are available for LaX(X=N, P, As, Sb), they are presented in our research as an example in order to test the reliability of our results. Four groups of muffin-tin radii were chosen, they were the fitted muffin-tin radii based on the optical properties of the crystals (the first), 1 : 1 for La : X(the second), 1.5 : 1 for La : X(the third), and a group of radii derived by making the charge in the interstitial space to be zero(the fourth). The results show that the fitted muffin-tin radii (the first group) give the best results compared with experimental values, and the predicted energy band gaps are very sensitive to the choice of muffin-tin radius in comparison with the other groups. The second and the third delivered results somewhere in between, while the fourth provided the worst results compared with the other groups. For the same crystal, with the increase of muffin-tin radius of lanthanum, the calculated energy band gaps decreased, going from semi-conductor to semimetal. This again clearly indicated the sensitivity of energy band structure on muffin-tin approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of least-squres polynomial smoothing in ICP-AES is discussed and a method of points insertion into spectral scanning intervals is proposed in the present paper. Optimal FWHM/SR ratio can be obtained, and distortion of smoothed spectra can be avoided by use of the recommended method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the effective medium approximation theory of composites, the empirical model proposed by Pandey and Kakar is remedied to investigate the microwave emissivity of sea surface under wave breaking driven by strong wind. In the improved model, the effects of seawater bubbles, droplets and difference in temperature of air and sea interface (DTAS) on the emissivity of sea surface covered by whitecaps are discussed. The model results indicate that the effective emissivity of sea surface increases with DTAS increasing, and the impacts of bubble structures and thickness of whitecaps layer on the emissivity are included in the model by introducing the effective dielectric constant of whitecaps layer. Moreover, a good agreement is obtained by comparing the model results with the Rose's experimental data.