34 resultados para Polinomio caratteristico, algebra monounaria
Resumo:
本文从空值语义及更新操作的关系出发,提出了一种新的扩展关系模型,用以组织更新操作下的含有空值的关系数据库中的信息.同时,定义了这种模型下的基本关系代数运算.为实现空值环境下关系数据库的数据更新奠定了基础。
Resumo:
The Second Round of Oil & Gas Exploration needs more precision imaging method, velocity vs. depth model and geometry description on Complicated Geological Mass. Prestack time migration on inhomogeneous media was the technical basic of velocity analysis, prestack time migration on Rugged surface, angle gather and multi-domain noise suppression. In order to realize this technique, several critical technical problems need to be solved, such as parallel computation, velocity algorithm on ununiform grid and visualization. The key problem is organic combination theories of migration and computational geometry. Based on technical problems of 3-D prestack time migration existing in inhomogeneous media and requirements from nonuniform grid, parallel process and visualization, the thesis was studied systematically on three aspects: Infrastructure of velocity varies laterally Green function traveltime computation on ununiform grid, parallel computational of kirchhoff integral migration and 3D visualization, by combining integral migration theory and Computational Geometry. The results will provide powerful technical support to the implement of prestack time migration and convenient compute infrastructure of wave number domain simulation in inhomogeneous media. The main results were obtained as follows: 1. Symbol of one way wave Lie algebra integral, phase and green function traveltime expressions were analyzed, and simple 2-D expression of Lie algebra integral symbol phase and green function traveltime in time domain were given in inhomogeneous media by using pseudo-differential operators’ exponential map and Lie group algorithm preserving geometry structure. Infrastructure calculation of five parts, including derivative, commutating operator, Lie algebra root tree, exponential map root tree and traveltime coefficients , was brought forward when calculating asymmetry traveltime equation containing lateral differential in 3-D by this method. 2. By studying the infrastructure calculation of asymmetry traveltime in 3-D based on lateral velocity differential and combining computational geometry, a method to build velocity library and interpolate on velocity library using triangulate was obtained, which fit traveltime calculate requirements of parallel time migration and velocity estimate. 3. Combining velocity library triangulate and computational geometry, a structure which was convenient to calculate differential in horizontal, commutating operator and integral in vertical was built. Furthermore, recursive algorithm, for calculating architecture on lie algebra integral and exponential map root tree (Magnus in Math), was build and asymmetry traveltime based on lateral differential algorithm was also realized. 4. Based on graph theory and computational geometry, a minimum cycle method to decompose area into polygon blocks, which can be used as topological representation of migration result was proposed, which provided a practical method to block representation and research to migration interpretation results. 5. Based on MPI library, a process of bringing parallel migration algorithm at arbitrary sequence traces into practical was realized by using asymmetry traveltime based on lateral differential calculation and Kirchhoff integral method. 6. Visualization of geological data and seismic data were studied by the tools of OpenGL and Open Inventor, based on computational geometry theory, and a 3D visualize system on seismic imaging data was designed.
Resumo:
Since the middle of 1980's, the mechanisms of transfer of training between cognitive subskills rest on the same body of declarative knowledge has been highly concerned. The dominant theory is theory of common element (Singley & Anderson, 1989) which predict that there will be little or no transfer between subskills within the same domain when knowledge is used in different ways, even though the subskills might rest on a common body of declarative knowledge. This idea is termed as "principle of use specificity of knowledge" (Anderson, 1987). Although this principle has gained some empirical evidence from different domains such as elementary geometry (Neves & Anderson, 1981) and computer programming (McKendree & Anderson, 1987), it is challenged by some research (Pennington et al., 1991; 1995) in which substantially larger amounts of transfer of training was found between substills that rest on a shared declarative knowledge but share little procedures (production rules). Pennington et al. (1995) provided evidence that this larger amounts of transfer are due to the elaboration of declarative knowledge. Our research provide a test of these two different explanation, by considering transfer between two subskills within the domain of elementary geometry and elementary algebra respectively, and the inference of learning method ("learning from examples" and "learning from declarative-text") and subject ability (high, middle, low) on the amounts of transfer. Within the domain of elementary geometry, the two subskills of generating proofs" (GP) and "explaining proofs" (EP) which are rest on the declarative knowledge of "theorems on the characters of parallelogram" share little procedures. Within the domain of elementary algebra, the two subskills of "calculation" (C) and "simplification" (S) which are rest on the declarative knowledge of "multiplication of radical" share some more procedures. The results demonstrate that: 1. Within the domain of elementary geometry, although little transfer was found between the two subskills of GP and EP within the total subjects, different results occurred when considering the factor of subject's ability. Within the high level subjects, significant positive transfer was found from EP to GP, while little transfer was found on the opposite direction (i. e. from GP to EP). Within the low level subjects, significant positive transfer was found from EP to GP, while significant negative transfer was found on the opposite direction. For the middle level subject, little transfer was found between the two subskills. 2. Within the domain of elementary algebra, significant positive transfer was found from S to C, while significant negative transfer was found on the opposite direction (i. e. from C to S), when considering the total subjects. The same pattern of transfer occurred within the middle level subjects and low level subject. Within the high level subjects, no transfer was found between the two subskills. 3. Within theses two domains, different learning methods yield little influence on transfer of training between subskills. Apparently, these results can not be attributed to either common procedures or elaboration of declarative knowledge. A kind of synthetic inspection is essential to construct a reasonable explanation of these results which should take into account the following three elements: (1) relations between the procedures of subskills; (2) elaboration of declarative knowledge; (3) elaboration of procedural knowledge. 排Excluding the factor of subject, transfer of training between subskills can be predicted and explained by analyzing the relations between the procedures of two subskills. However, when considering some certain subjects, the explanation of transfer of training between subskills must include subjects' elaboration of declarative knowledge and procedural knowledge, especially the influence of the elaboration on performing the other subskill. The fact that different learning methods yield little influence on transfer of training between subskills can be explained by the fact that these two methods did not effect the level of declarative knowledge. Protocol analysis provided evidence to support these hypothesis. From this research, we conclude that in order to expound the mechanisms of transfer of training between cognitive subskills rest on the same body of declarative knowledge, three elements must be considered synthetically which include: (1) relations between the procedures of subskills; (2) elaboration of declarative knowledge; (3) elaboration of procedural knowledge.
Resumo:
The dynamical Lie algebraic approach developed by Alhassid and Levine combined with intermediate picture is applied to the study of translational-vibrational energy transfer in the collinear collision between an atom and an anharmonic oscillator. We find that the presence of the anharmonic terms indeed has an effect on the vibrational probabilities of the oscillator. The computed probabilities are in good agreement with those obtained using exact quantum method. It is shown that the approach of dynamical Lie algebra combining with intermediate picture is reasonable in the treating of atom-anharmonic oscillator scattering.