64 resultados para Plasma-materials interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In laser-target interaction, the effects of laser intensity on plasma oscillation at the front surface of targets have been investigated by one-dimensional particle in cell simulations. The periodical oscillations of the ion density and electrostatic field at the front surface of the targets are reported for the first time, which is considered as an intrinsic property of the target excited by the laser. The oscillation period depends only on initial plasma density and is irrelevant with laser intensity. Flattop structures with curves in ion phase space are found with a more intense laser pulse due to the larger amplitude variation of the electrostatic field. A simple but valid model is proposed to interpret the curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of a petawatt laser with a small solid-density plasma bunch is studied by particle-in-cell simulation. It is shown that when irradiated by a laser of intensity >10(21) W/cm(2), a dense plasma bunch of micrometer size can be efficiently accelerated. The kinetic energy of the ions in the high-density region of the plasma bunch can exceed ten MeV at a density in the 10(23)-cm(-3) level. Having a flux density orders of magnitude higher than that of the traditional charged-particle pulses, the laser-accelerated plasma bunch can have a wide range of applications. In particular, such a dense energetic plasma bunch impinging on the compressed fuel in inertial fusion can significantly enhance the nuclear-reaction cross section and is thus a promising alternative for fast ignition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical fluid model for vacuum heating during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking since the front part of the returning electrons always move slower than the trailing part. This can lead to heating of the plasma at the expense of the wave energy. An estimate for the efficiency of laser energy absorption by the vacuum heating is given. It is also found that for the incident laser intensity parameter, a(L)> 0.5, the absorption rate peaks at an incident angle 45 degrees-52 degrees and it reaches a maximum of 30% at a(L)approximate to 1.5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions of oblique incident probe wave with oncoming ionization fronts have been investigated using moving boundary conditions. Field conversion coefficients of reflection, transmission and magnetic modes produced in the interactions are derived. Phase matching conditions at the front and frequency up-shifting formulas for the three modes are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proton trapping and acceleration by an electron bubble-channel structure in laser interaction with high-density plasma is investigated by using three-dimensional particle-in-cell simulations. It is shown that protons can be trapped, bunched, and efficiently accelerated for appropriate laser and plasma parameters, and the proton acceleration is enhanced if the plasma consists mainly of heavier ions such as tritium. The observed results are analyzed and discussed in terms of a one-dimensional analytical three-component-plasma wake model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of a laser-accelerated micron-size projectile on a dense plasma target is studied using two-dimensional particle-in-cell simulations. The projectile is first accelerated by an ultraintense laser. It then impinges on the dense plasma target and merges with the latter. Part of the kinetic energy of the laser-accelerated ions in the projectile is deposited in the fused target, and an extremely high concentration of plasma ions with a mean kinetic energy needed for fusion reaction is induced. The interaction is thus useful for laser-driven impact fusion and as a compact neutron source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodic nanostructures along the polarization direction of light are observed inside silica glasses and tellurium dioxide single crystal after irradiation by a focused single femtosecond laser beam. Backscattering electron images of the irradiated spot inside silica glass reveal a periodic structure of stripe-like regions of similar to 20 nm width with a low oxygen concentration. In the case of the tellurium dioxide single crystal, secondary electron images within the focal spot show the formation of a periodic structure of voids with 30 nm width. Oxygen defects in a silica glass and voids in a tellurium dioxide single crystal are aligned perpendicular to the laser polarization direction. These are the smallest nanostructures below the diffraction limit of light, which are formed inside transparent materials. The phenomenon is interpreted in terms of interference between the incident light field and the electric field of electron plasma wave generated in the bulk of material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manipulation of the spin degree of freedom has been demonstrated in a spin-polarized electron plasma in a heterostructure by using exchange-interaction-induced dynamic spin splitting rather than the Rashba and Dresselhaus types, as revealed by time-resolved Kerr rotation. The measured spin splitting increases from 0.256 meV to 0.559 meV as the bias varies from -0.3 V to -0.6 V. Both the sign switch of the Kerr signal and the phase reversal of Larmor precessions have been observed with biases, which all fit into the framework of exchange-interaction-induced spin splitting. The electrical control of it may provide a new effective scheme for manipulating spin-selected transport in spin FET-like devices. Copyright (C) EPLA, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Yb3Fe5O12, the exchange effective field can be expressed as H-eff = -lambda center dot center dot center dot M-Fe = -lambda chi(eff)center dot center dot center dot H-e = -gamma center dot center dot center dot H-e where gamma is named as the exchange field parameter and H-e is the external magnetic field. Then, in this paper, by the discussions on the characteristics of the exchange field parameter gamma, the properties of exchange interaction in ytterbium iron garnet (Yb3Fe5O12) are analyzed under extreme conditions (high magnetic fields and low temperatures). Our theory suggests that the exchange field parameter gamma is the function of the temperatures under different external magnetic fields, and gamma = a+b center dot center dot center dot T+c center dot center dot center dot T-2, where the coefficients a, b, c are associated with the external magnetic fields and the magnetized directions. Thus, the temperature-dependence, field-dependence and anisotropic characteristics of the exchange interaction in Yb3Fe5O12 are revealed. Also, excellent fits to the available experiments are obtained. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antibunching properties of the fluorescence from a two-level ideal system in a 12-fold quasiperiodic photonic crystal are investigated based on the calculated local density of states. We found that the antibunching phenomenon of the fluorescence from two-level ideal systems could be significantly changed by varying their positions, i.e., perfect antibunching and antibunching with damped Rabi oscillation phenomenon occurred in different positions and at different frequencies in photonic crystals as a result of the large differences in the local density of states. This study revealed that the multi-level coherence of fluorescence from a two-level ideal system could be manipulated by controlling the position of the two-level ideal system in photonic crystals and the emission frequency in the photonic band structure. Copyright (C) EPLA, 2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel silicon-on-insulator thermo-optic variable optical attenuator with isolated grooves based on a multimode interference coupler principle is fabricated by the inductive coupled plasma etching technology. The maximum fibre-to-fibre insertion loss is lower than 2.2 dB, the dynamic attenuation range is from 0 to 30 dB in the wavelength range 1500-1600 nm, and the maximum power consumption is only 140 mW. The response frequency of the fabricated variable optical attenuator is about 30 kHz. Compared to the variable optical attenuator without isolated grooves, the maximum power consumption decreases more than 220 mW, and the response frequency rises are more than 20 kHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the observation of resonant Raman scattering in low-temperature-grown AlGaAs/GaAs structure. Two kinds of excitation lights, 632.8 and 488 nm laser lines, were used to detect scattering signal from different regions based on different penetration depths. Under the outgoing resonant condition, up to fourth-order resonant Raman peaks were observed in the low-temperature-grown AlGaAs alloy, owing to a broad exciton luminescence in low-temperature-grown AlGaAs alloy induced by intrinsic defects and As cluster after post-annealing. These resonant peaks were assigned according to their fundamental modes. Among the resonant peaks, besides the overtones of the GaAs- or AlAs-like mode, there exist combination bands of these two kinds of modes. In addition, a weak scattering peak similar to the bulk GaAs longitudinal optical mode was observed in low-temperature Raman experiments. We consider the weak signal correlated with GaAs clusters appearing in AlGaAs alloys. The accumulation of GaAs in AlGaAs alloys was enhanced after annealing at high temperatures. A detailed study of the dependence of vibration modes on measuring temperature and post-annealing conditions is given also. In light of our experiments, it is suggested that a Raman scattering experiment is a sensitive microscopic probe of local disorder and, especially performed at low temperature, is a superior method in detecting and analyzing the weak interaction between phonons and electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To heteroepitaxally grow the crystalline cubic-GaN (c-GaN) film on the substrates with large lattice mismatch is basically important for fabricating the blue or ultraviolet laser diodes based on cubic group III nitride materials. We have obtained the crystalline c-GaN film and the heteroepitaxial interface between c-Gan and GaAs (001) substrate by the ECR Plasma-Assisted Metal Organic Chemical Vapor Deposition (PA-MOCVD) under low-pressure and low-temperature (similar to600degreesC) on a homemade ECR-plasma Semiconductor Processing Device (ESPD). In order to decrease the growth temperature, the ECR plasma source was adopted as the activated nitrogen source, therefore the working pressure of MOCVD was decreased down to the region less than 1 Pa. To eliminate the damages from energetic ions of current plasma source, a Multi-cusp cavity,coupling ECR Plasma source (MEP) was selected to use in our experiment. To decrease the strain and dislocations induced from the large lattice mismatch between c-GaN and GaAs substrate, the plasma pretreatment procedure i.e., the initial growth technique was investigated The experiment arrangements, the characteristics of plasma and the growth procedure, the characteristics on-GaN film and interface between c-GaN and GaAs(001), and the roles of ECR plasma are described in this contribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of systematic experiments on the growth of high quality GaNAs strained layers on GaAs (001) substrate have been carried out by using DC active Nz plasma, assisted molecular beam epitaxy. The samples of GaNAs between 3 and 200 nm thick were evaluated by double crystal X-ray diffraction (XRD) and photoluminescence (PL) measurements. PL and XRD measurements for these samples are in good agreement. Some material growth and structure parameters affecting the properties of GaNAs/GaAs heterostructure were studied; they were: (1) growth temperature of GaNAs epilayer; (2) electrical current of active N-2 plasma; (3) Nz flow rate; (4) GaNAs growth rate; (5) the thickness of GaNAs strained layer. XRD and PL measurements showed that superlattice with distinct satellite peaks up to two orders and quantum well structure with intensity at 22 meV Fourier transform infrared spectroscopy (FWHM) can be achieved in molecular beam epitaxy (MBE) system. (C) 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two series of films has been prepared by using a new regime of plasma enhanced chemical vapor deposition (PECVD) in the region adjacent to the phase transition from amorphous to crystalline state. The photoelectronic properties of the films have been investigated as a function of crystalline fraction. In comparison with typical a-Si:H, these diphasic films with a crystalline fraction less than 0.3 show a similar optical absorption coefficient, higher mobility life-time product ( LT) and higher stability upon light soaking. By using the diphasic nc-Si/a-Si films as the intrinsic layer, a p-i-n junction solar cell has been prepared with an initial efficiency of 9. 10 % and a stabilized efficiency of 8.56 % (AM 1.5, 100 mW/cm(2)).