79 resultados para Pile-Up


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of fluoride ions introduction on structural, OH- content and up-conversion luminescence properties in Er3+-doped heavy metal oxide glasses have been investigated. Structure was investigated, indicating that fluoride has an important influence on the phonon density, maximum phonon energy of host glasses. With increasing fluoride content, the up-conversion luminescence intensity and quantum efficiencies increase notably, which could not be explained only by the maximum phonon energy change of host glasses. Our results show that, with the introduction of PbF2, the decrease of phonon density and OH- content contributes more to the enhanced up-conversion emissions than that of maximum phonon energy. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Up-conversion luminescence properties of a Tm3+/Yb3+ codoped oxyfluoride glass-ceramics under 980nm excitation are investigated. Intense blue emission centered at 476nm, corresponding to (1)G(4) -> H-3(6) transitions of Tm3+ was simultaneously observed in the transparent oxyfluoride glass ceramics at room temperature. The intensity of the blue up-conversion luminescence in a 1 mol% YbF3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The reason for the intense TM3+ up- conversion luminescence in the oxyfluoride glass-ceramics is discussed. The dependence of up-conversion intensities on excitation power and possible up-conversion mechanism are also evaluated. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The up-conversion properties of Tm3+/Yb3+ codoped oxyfluoride glass-ceramics under 980 nm excitation were investigated. Intense blue up-conversion luminescence due to the Tm3+: (1)G(4) -> H-3(6) transition was observed in the glass-ceramics. The intensity of the blue up-conversion luminescence in a 1 mol% YbF3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The up-conversion mechanism is proposed. The reason for the intense Tm3+ up-conversion luminescence in the oxyfluoride glass-ceramics and the concentrations dependence of upconversion luminescence are also discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+/Yb3+-codoped novel oxyfluoride bismuth-germanium glass was prepared and its up-conversion fluorescence property under 975 nm excitation has been studied. Intense green and weak red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The possible up-conversion mechanism was also evaluated. The optimal Yb3+-Er3+ concentration ratio is found based on the direct lifetime measurements of excited levels for Er3+ ion. The structure of this novel oxyfluoride bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel oxyfluoride bismuth-germanium glass with relatively lower maximum phonon energy (similar to 731 cm(-1)) can be used as potential host material for up-conversion lasers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tm3+/Yb3+-codoped heavy metal oxide-halide glasses have been synthesized by conventional melting and quenching method. Structural properties were obtained based on the Raman spectra, indicating that halide ion has an important influence on the phonon density and maximum phonon energy of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. With increasing halide content, the up-conversion luminescence intensity and blue luminescence lifetimes of Tm3+ ion increase notably. Our results show that with the substitution of halide ion for oxygen ion, the decrease of phonon density and maximum phonon energy of host glasses both contribute to the enhanced up-conversion emissions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tm3+/Yb3+-codoped gernianate-niobic (GN) and germanium-bismuth (GB) glasses have been synthesized by conventional ruching and quenching method. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4)->H-3(6) and (1)G(4)->H-3(4), respectively, were observed at room temperature. The possible Up-conversion mechanisms are discussed and estimated. GN glass showed a weaker up-conversion emission than GB glass, which is inconsistent with the prediction from the difference of maximum phonon energy between GN and GB glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Compared with phonon side-band spectroscopy, Raman spectroscopy extracts more information including both phonon energy and phonon density. For the first time, our results reveal that, besides the maximum phonon energy, the phonon density of host glasses is also an important factor in determining the up-conversion efficiency. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tm3+-doped oxide-chloride germanate and tellurite glasses have been synthesized by conventional melting method. Intense up-conversion luminescence emissions were simultaneously observed at room temperature in these glasses. The possible up-conversion mechanisms are discussed and estimated. However, in these Tm3+-doped glasses, tellurite glass showed weaker up-conversion emissions than germanate glass, which is inconsistent with the prediction from the difference of maximum phonon energy between tellurite and germanate glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Our results confirm that, besides the maximum phonon energy, the phonon density of host glasses is also an important factor in determining the up-conversion efficiency. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ytterbium-sensitized erbium-doped oxide-halide tellurite and germanate-niobic-lead glasses have been synthesized by conventional melting method. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature in these glasses. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. Tellurite glass showed a weaker up-conversion emission than germanate-niobic-lead glass, which is inconsistent with the prediction from the difference of maximum phonon energy between tellurite and germanate-mobic-lead glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Compared with phonon side-band spectroscopy, Raman spectroscopy extracts more information including both phonon energy and phonon density. Our results reveal that the phonon density and the maximum phonon energy of host glasses are both important factors in determining the up-conversion efficiency. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Up-converting phosphor technology (UPT)-based lateral-flow immunoassay has been developed for quantitative detection of Yersinia pestis rapidly and specifically. In this assay, 400 nm up-converting phosphor particles were used as the reporter. A sandwich immumoassay was employed by using a polyclonal antibody against F1 antigen of Y. pestis immobilized on the nitrocellulose membrane and the same antibody conjugated to the UPT particles. The signal detection of the strips was performed by the UPT-based biosensor that could provide a 980 nm IR laser to excite the phosphor particles, then collect the visible luminescence emitted by the UPT particles and finally convert it to the voltage as a signal. V-T and V-c stand for the multiplied voltage units for the test and the control line, respectively, and the ratio V-T/V-C is directly proportional to the number of Y pestis in a sample. We observed a good linearity between the ratio and log CFU/ml of Y pestis above the detection limit, which was approximately 10(4) CFU/mI. The precision of the intra- and inter-assay was below 15% (coefficient of variation, CV). Cross-reactivity with related Gram-negative enteric bacteria was not found. The UPT-LF immunoassay system presented here takes less than 30 min to perform from the sample treatment to the data analysis. The current paper includes only preliminary data concerning the biomedical aspects of the assay, but is more concentrated on the technical details of establishing a rapid manual assay using a state-of-the-art label chemistry. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The up-conversion luminescence of Yb3+-doped yttriurn lanthanum oxide transparent ceramic was investigated. It was ascribed to cooperative luminescence originated from the coupled states of the Yb3+ ion pairs. The proper doping of La2O3 can remove the cooperative luminescence of Yb3+ ion. But excessive La2O3 (at least 10 at.%) the cooperative up-conversion of Yb3+:Y2O3 is obtained again, and the intensity of up-conversion luminescence strengthens with the increase of La2O3 content. (c) 2007 Elsevier B.V. All rights reserved.