54 resultados para Picard-Fuchs Equations
Resumo:
The error theory of linear equation system has been applied to the calibration procedure of microwave network analyser in this article. A new explanation for the choice of the linear calibration equations is proposed and a general principle for choosing calibration equations is presented. The method can also be used to predict the occurrence of the problem of frequency limitation at some periodic frequencies. This principle is employed to the thru-short-delay (TSD) method and the solution using the chosen equations gives the most accurate results. A good agreement between the theory and the experiment has been obtained.
Resumo:
A hierarchical equations of motion formalism for a quantum dissipation system in a grand canonical bath ensemble surrounding is constructed on the basis of the calculus-on-path-integral algorithm, together with the parametrization of arbitrary non-Markovian bath that satisfies fluctuation-dissipation theorem. The influence functionals for both the fermion or boson bath interaction are found to be of the same path integral expression as the canonical bath, assuming they all satisfy the Gaussian statistics. However, the equation of motion formalism is different due to the fluctuation-dissipation theories that are distinct and used explicitly. The implications of the present work to quantum transport through molecular wires and electron transfer in complex molecular systems are discussed. (c) 2007 American Institute of Physics.
Resumo:
Formulation of a 16-term error model, based on the four-port ABCD-matrix and voltage and current variables, is outlined. Matrices A, B, C, and D are each 2 x 2 submatrices of the complete 4 x 4 error matrix. The corresponding equations are linear in terms of the error parameters, which simplifies the calibration process. The parallelism with the network analyzer calibration procedures and the requirement of five two-port calibration measurements are stressed. Principles for robust choice of equations are presented. While the formulation is suitable for any network analyzer measurement, it is expected to be a useful alternative for the nonlinear y-parameter approach used in intrinsic semiconductor electrical and noise parameter measurements and parasitics' deembedding.
Resumo:
Semiconductor microlasers with an equilateral triangle resonator (ETR) are analyzed by rate equations with the mode lifetimes calculated by the finite-difference time-domain technique and the Pade approximation. A gain spectrum based on the relation of the gain spectrum and the spontaneous emission spectrum is proposed for considering the mode selection in a wide wavelength span. For an ETR microlaser with the side length of about 5 mum, we find that single fundamental mode operation at about 1.55 mum can be obtained as the side length increases from 4.75 to 5.05 mum. The corresponding wavelength tuning range is 93 nm, and the threshold current is about 0.1 to 0.4 mA.
Resumo:
This paper begins from the thru-short-open (TSO) and thru-line-match (TLM) methods to investigate the correlation of the calibration equations of these two methods, The relations among the measurements with the corresponding standards are obtained. It is found that the line standard with zero length can be used instead of ideal open and short, in case that two test fixtures are symmetrical. For asymmetrical fixtures, the measurements with the standards line, open and short are related at certain frequencies, and the matched load can be replaced by the line standards. The relations established are used to test short and match standards and analyze the freqPuency limits of the TSO method, Good agreement between theory and experiment is obtained, It is found that the TSO method becomes very poor when the insertion phase of the thru standard is near n pi/4, and this method has a lower frequency limit. The TLM method is found unsuitable for calibrating asymmetrical fixtures.
Resumo:
We consider systems of equations of the form where A is the underlying alphabet, the Xi are variables, the Pi,a are boolean functions in the variables Xi, and each δi is either the empty word or the empty set. The symbols υ and denote concatenation and union of languages over A. We show that any such system has a unique solution which, moreover, is regular. These equations correspond to a type of automation, called boolean automation, which is a generalization of a nondeterministic automation. The equations are then used to determine the language accepted by a sequential network; they are obtainable directly from the network.
Resumo:
Recursive specifications of domains plays a crucial role in denotational semantics as developed by Scott and Strachey and their followers. The purpose of the present paper is to set up a categorical framework in which the known techniques for solving these equations find a natural place. The idea is to follow the well-known analogy between partial orders and categories, generalizing from least fixed-points of continuous functions over cpos to initial ones of continuous functors over $\omega $-categories. To apply these general ideas we introduce Wand's ${\bf O}$-categories where the morphism-sets have a partial order structure and which include almost all the categories occurring in semantics. The idea is to find solutions in a derived category of embeddings and we give order-theoretic conditions which are easy to verify and which imply the needed categorical ones. The main tool is a very general form of the limit-colimit coincidence remarked by Scott. In the concluding section we outline how compatibility considerations are to be included in the framework. A future paper will show how Scott's universal domain method can be included too.
Resumo:
The rate equations used for measuring spontaneous emission factor beta is examined through the comparison of numerical results, The results show that beta obtained by using total spontaneous emission rate R(sp) = N/tau sp is about double of that using R(sp) = BN2, The magnitude difference between the measured beta and that predicted by classical theory [8] will disappear by using more reasonable R(sp) = BN2. The results also show that the magnitude of beta may be underestimated by ignoring the nonradiative recombination rates.