75 resultados para Physiological optics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We captured free-ranging male Yangtze finless porpoises over three seasons and assayed leukocytes and serum biochemistry to investigate physiological responses to the capture and handlings. Serum thyroid hormones (THs) declined sharply in those porpoises compared with hormone variation in a captive male finless porpoise. Hypernatremia and hypokalemia were also significant in the free-ranging animals suggesting that conservation of serum sodium might be acutely vital for this freshwater subspecies. The animals captured in spring showed more significant neutrophilia and eosinopenia than those captured in autumn suggesting that they may be more affected by capture during the breeding season. Furthermore, physical examination of porpoises when out of the water was apparently stressful, particularly when they were kept out of the water for longer periods. However, an increase in circulating THs may be an adaptive response to accommodate these short-term stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent study has shown that nonanoic acid (NA) is one of the strongest allelochemicals to a cyanobacterium Microcystis aeruginosa, but the physiological responses of M. aeruginosa to NA stress remain unknown. In this study, physiological characters such as the growth rate, photosynthetic processes, phosphorus and nitrogen uptake kinetics, and the contents of intracellular microcystin of M. aeruginosa PCC7806 were studied under the NA stress. The results showed that the growth rates of M. aeruginosa PCC 7806 were significantly inhibited in all NA stress treatments during first 3 days after exposure, and the growth rate was recovered after 5-day exposure. After 2-day exposure, the contents of both phycocyanin and allophycocyanin per cell decreased at NA concentration of 4 mg L-1, and oxygen evolution was inhibited even at the concentration of 0.5 mg L-1, but carotenoid content per cell was slightly boosted in NA stress. Physiological recovery of M. aeruginosa PCC7806 was observed after 7-day exposure to NA. It was shown that NA stress had no effect on uptake of nitrogen, but could stimulate the uptake of phosphorus. The contents of intracellular microcystin have not been affected in all NA treatments in contrast with the control. (C) 2008 Wiley Periodicals, Inc. Environ Toxicol 24: 610-617, 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron is an essential trace element for biological requirements of phytoplankton. Effects of iron on physiological and biochemical characteristics of Microcystis wesenbergii were conducted in this study. Results showed that 0.01 mu M [Fe3+] seriously inhibited growth and chlorophyll synthesis of M. wesenbergii, and induced temporary increase of ATPase activities, however, NR. ACP and ALP activities were restrained by iron limitation. Interestingly, iron addition on day 8 resulted in the gradual restoration of structures and functions of above enzymes and resisted a variety of stresses from iron limitation. M. wesenbergii in 10 mu M [Fe3+] treatment group grew normally. enzymes maintained normal levels, and residual phosphate contents in cultures first sharply decreased, then smoothly as M. wesenbergii has a characteristic of luxury consumption of phosphorus. Above parameters in 100 mu M [Fe3+] treatment group were almost same with those in 10 mu M [Fe3+] treatment group except for NR, ACP and ALP activities. In 100 mu M [Fe3+] treatment group, activities of ACP and ALP had temporary increase because phosphate and ferric iron could form insoluble compound - ferric phosphate (Fe3PO4) through adsorption effect. resulting in lack of bioavailable phosphate in culture media. The experiment suggested that too low or too high iron can affect obviously physiological and biochemical characteristics of M. wesenbergii.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The submersed macrophyte, Vallisneria natans L., was cultured in laboratory with NH (4) (+) -enriched tap water (1 mg L-1 NH4-N) for 2 months and the stressful effects of high ammonium (NH (4) (+) ) concentrations in the water column on this species was evaluated. The plant growth was severely inhibited by the NH (4) (+) supplement in the water column. The plant carbon and nitrogen metabolisms were disturbed by the NH (4) (+) supplement as indicated by the accumulation of free amino acids and the depletion of soluble carbohydrates in the plant tissues. The results suggested that high NH (4) (+) concentrations in the water column may hamper the restoration of submersed vegetation in eutrophic lakes.