36 resultados para Photo-elicitation
Resumo:
We report a simple method to directly pattern polymer-based photo luminescent material, i.e. a prepatterned mask is placed a close distance above it. The final structure is a positive replica of the lateral structures in the mask with submicrometer resolution. The comparison of luminescence efficiency before and after patterning indicates almost no degradation in optical property of the material during the experiments. The mechanism of pattern formation is also discussed.
Resumo:
Novel soluble rare earth aromatic carboxylates were prepared. The triplet energy level of organic ligand was measured. The photoluminescence properties of the Tb3+ and EU3+ aromatic carboxylates and lifetimes were investigated, which indicated that these rare earth complexes have high quantum efficiency. Because of their excellent solubility, polymer-doping rare earth carboxylates were fabricated as thin Films by spin-coating method and their luminescence properties were studied. Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color. The maximum luminance of the device of ITO/PVK/PVK :Th (AS)(3)Phen: PBD/PBD/Al is 32 cd(.)m(-2) at 28 V.
Resumo:
The photo-induced decarbonylation of Cp'Cr(NO)(CO)(2) (1a) in MeCN solution in the presence of R2E2 (E = S, Se; R = Me, Ph) leads to the formation of chalcogenolato-bridged binuclear complexes Cp-2'Cr-2(NO)(2)(mu -ER)(2) [E = S; R = Me (2a), Ph (3a); E = Se, R = Me (4a), Ph (5a)] while reactions between Cp'M(NO)(CO)(2) [M = Mo (1b), W (1c)] and Ph2E2 (E = S, Se) result in mononuclear complexes Cp'M(NO)(EPh)(2) [M = Mo; E = S (9b), Se (10b); M = W, E = S (11c), Se (12c)]. The corresponding reactions of (1b) with Me2E2 (E = S, Se) yielded both mono and binuclear complexes: Cp'Mo(NO)(SeMe)(2) (8b), Cp-2'Mo-2(NO)(2)(mu -EMe)(2) [E = S (6b), Se (7b)]. The new complexes have been characterized by i.r., H-1-, C-13-n.m.r. spectra and by electron-impact mass spectrometry.