57 resultados para Pedagogical interaction
Resumo:
A parallel plate flow chamber was used to study the interaction force between human IgG (immobilized on a chip surface as ligand) and goat anti-human IgG (immobilized on microspheres surface as receptor). First, it was demonstrated that the binding force between the microspheres and the chip surface came from the bio-specific interaction between the antigen and the antibody. Secondly, it was obtained that the critical shear rate to detach microspheres from the chip surface increases with the ligand surface concentration. Finally, two models to estimate the antigen-antibody bond strength considering bonds' positions were proposed and analyzed.
Resumo:
It is to investigate molecule interactions between antigen and antibody with ellipsometric imaging technique and demonstrate some features and possibilities offered by applications of the technique. Molecule interaction is an important interest for molecule biologist and immunologist. They have used some established methods such as immufluorcence, radioimmunoassay and surface plasma resonance, etc, to study the molecule interaction. At the same time, experimentalists hope to use some updated technique with more direct visual results. Ellipsometric imaging is non-destructive and exhibits a high sensitivity to phase transitions with thin layers. It is capable of imaging local variations in the optical properties such as thickness due to the presence of different surface concentration of molecule or different deposited molecules. If a molecular mono-layer (such as antigen) with bio-activity were deposited on a surface to form a sensing surface and then incubated in a solution with other molecules (such as antibody), a variation of the layer thickness when the molecules on the sensing surface reacted with the others in the solution could be observed with ellipsometric imaging. Every point on the surface was measured at the same time with a high sensitivity to distinguish the variation between mono-layer and molecular complexes. Ellipsometric imaging is based on conventional ellipsometry with charge coupled device (CCD) as detector and images are caught with computer with image processing technique. It has advantages of high sensitivity to thickness variation (resolution in the order of angstrom), big field of view (in square centimeter), high sampling speed (a picture taken within one second), and high lateral resolution (in the order of micrometer). Here it has just shown one application in study of antigen-antibody interaction, and it is possible to observe molecule interaction process with an in-situ technique.
Resumo:
In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.
Resumo:
For the purpose of human-computer interaction (HCI), a vision-based gesture segmentation approach is proposed. The technique essentially includes skin color detection and gesture segmentation. The skin color detection employs a skin-color artificial neural network (ANN). To merge and segment the region of interest, we propose a novel mountain algorithm. The details of the approach and experiment results are provided. The experimental segmentation accuracy is 96.25%. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Particle-in-cell simulations are performed to study the acceleration of ions due to the interaction of a relativistic femtosecond laser pulse with a narrow thin target. The numerical results show that ions can be accelerated in a cascade by two electrostatic fields if the width of the target is smaller than the laser beam waist. The first field is formed in front of the target by the central part of the laser beam, which pushes the electron layer inward. The major part of the abaxial laser energy propagates along the edges to the rear side of the target and pulls out some hot electrons from the edges of the target, which form another electrostatic field at the rear side of the target. The ions from the front surface are accelerated stepwise by these two electrostatic fields to high energies at the rear side of the target. The simulations show that the largest ion energy gain for a narrow target is about four times higher than in the case of a wide target. (c) 2006 American Institute of Physics.
Resumo:
We propose a plasma channel scheme to obtain an improved table-top laser driven fusion neutron yield as a result of explosions of large deuterium clusters irradiated by an intense laser pulse. A cylindrical plasma channel is created by two moderate intensity laser prepulses at the edge of a deuterium cluster jet along which an intense main laser pulse propagates several nanoseconds later. With the aid of this plasma channel, the main laser pulse will be allowed to deposit its energy into the central region of the deuterium gas jet where the cluster sizes are larger and the atomic density is higher. The plasma channel formation and its impact on the deuterium ion energy spectrum and the consequent fusion neutron yield have been investigated. The calculated results show that a remarkable increase of the table-top laser driven fusion neutron yield would be expected.
Resumo:
An analytical fluid model for JxB heating during the normal incidence by a short ultraintense linearly polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the JxB heating includes two distinct coupling processes depending on the initial laser and plasma conditions: for a moderate intensity (a <= 1), the ponderomotive force of the laser light can drive a large plasma wave at the point n(e)=4 gamma(0)n(c) resonantly. When this plasma wave is damped, the energy is transferred to the plasma. At higher intensity, the electron density is steepened to a high level by the time-independent ponderomotive force, n(e)> 4 gamma(0)n(c), so that no 2 omega resonance will occur, but the longitudinal component of the oscillating ponderomotive field can lead to an absorption mechanism similar to "vacuum heating." (c) 2006 American Institute of Physics.
Resumo:
The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8x10(6)Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 x 10(16)W/cm(2) laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.
Resumo:
An analytical fluid model for vacuum heating during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking since the front part of the returning electrons always move slower than the trailing part. This can lead to heating of the plasma at the expense of the wave energy. An estimate for the efficiency of laser energy absorption by the vacuum heating is given. It is also found that for the incident laser intensity parameter, a(L)> 0.5, the absorption rate peaks at an incident angle 45 degrees-52 degrees and it reaches a maximum of 30% at a(L)approximate to 1.5.
Resumo:
The distribution of optical held and charge density in the interaction between ultraintense ultrashort pulse laser and plasma is studied by numerical computation. The plasma considered has an exponential density profile. which corresponds to isothermal expanding. Our calculation shows that electrons are pushed forward by the incident laser, but ions, due to their much greater inertia, remain stationary. The resulting charge displacement forms a strong electrostatic field in the plasma. After the interaction of laser pulse and plasma. electrostatic energy still exists even after the laser pulse and will be absorbed by the plasma finally. This serves as an explanation to the mechanism of laser energy deposited into plasma.
Resumo:
Interactions of oblique incident probe wave with oncoming ionization fronts have been investigated using moving boundary conditions. Field conversion coefficients of reflection, transmission and magnetic modes produced in the interactions are derived. Phase matching conditions at the front and frequency up-shifting formulas for the three modes are also presented.
Resumo:
The interaction between integrin macrophage differentiation antigen associated with complement three receptor function (Mac-1) and intercellular adhesion molecule-1 (ICAM-1), which is controlled tightly by the ligand-binding activity of Mac-1, is central to the regulation of neutrophil adhesion in host defense. Several "inside-out" signals and extracellular metal ions or antibodies have been found to activate Mac-1, resulting in an increased adhesiveness of Mac-1 to its ligands. However, the molecular basis for Mac-1 activation is not well understood yet. In this work, we have carried out a single-molecule study of Mac-1/ICAM-1 interaction force in living cells by atomic force microscopy (AFM). Our results showed that the binding probability and adhesion force of Mac-1 with ICAM-1 increased upon Mac-1 activation. Moreover, by comparing the dynamic force spectra of different Mac-1 mutants, we expected that Mac-1 activation is governed by the downward movement of its alpha 7 helix. (c) 2007 Elsevier Inc. All rights reserved.