42 resultados para Particle physics, QCD
Resumo:
We have developed the formula and the numerical code for calculating the rearrangement contribution to the single particle (s.p.) properties in asymmetric nuclear matter induced by three-body forces within the framework of the Brueckner theory extended to include a microscopic three-body force (TBF). We have investigated systematically the TBF-induced rearrangement effect on the s.p. properties and their isospin-behavior in neutron-rich nuclear medium. It is shown that the TBF induces a repulsive rearrangement contribution to the s.p. potential in nuclear medium. The repulsion of the TBF rearrangement contribution increases rapidly as a function of density and nucleon momentum. It reduces largely the attraction of the BHF s.p. potential and enhances strongly the momentum dependence of the s.p. potential at large densities and high-momenta. The TBF rearrangement effect on symmetry potential is to enhances its repulsion (attraction) on neutrons (protons) in dense asymmetric nuclear matter.
Resumo:
Deconfinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. We include a perturbative QCD correction parameter alpha(s) in the CFL quark matter equation of states. It is shown that the CFL quark core with K-0 condensation forms in neutron star matter with the large value of alpha(s). If the small value of alpha(s) is taken, hyperons suppress the CFL quark phase and the HP is dominant in the high-density region of (proto)neutron star matter. Neutrino trapping makes the fraction of the CFL quark matter decrease compared with those without neutrino trapping. Moreover, increasing the QCD correction parameter alpha(s) or decreasing the bag constant B and the strange quark mass m(s) can make the fraction of the CFL quark matter increase, simultaneously, the fraction of neutrino in protoneutron star matter increases, too. The maximum masses and the corresponding radii of (proto)neutron stars are not sensitive to the QCD correction parameter alpha(s).
Resumo:
Highly differential experimental results of the scattering system He++ on He at 30 keV are presented as well as a complete unified theoretical description where excitation, transfer and ionization are treated simultaneously on an ab initio level. The agreement even for highly differential cross sections is nearly complete although no explicit correlation besides Pauli correlation is included in the calculations.
Resumo:
Respiration-induced target motion is a major problem in intensity-modulated radiation therapy. Beam segments are delivered serially to form the total dose distribution. In the presence of motion, the spatial relation between dose deposition from different segments will be lost. Usually, this results in over-and underdosage. Besides such interplay effects between target motion and dynamic beam delivery as known from photon therapy, changes in internal density have an impact on delivered dose for intensity-modulated charged particle therapy. In this study, we have analysed interplay effects between raster scanned carbon ion beams and target motion. Furthermore, the potential of an online motion strategy was assessed in several simulations. An extended version of the clinical treatment planning software was used to calculate dose distributions to moving targets with and without motion compensation. For motion compensation, each individual ion pencil beam tracked the planned target position in the lateral aswell as longitudinal direction. Target translations and rotations, including changes in internal density, were simulated. Target motion simulating breathing resulted in severe degradation of delivered dose distributions. For example, for motion amplitudes of +/- 15 mm, only 47% of the target volume received 80% of the planned dose. Unpredictability of resulting dose distributions was demonstrated by varying motion parameters. On the other hand, motion compensation allowed for dose distributions for moving targets comparable to those for static targets. Even limited compensation precision (standard deviation similar to 2 mm), introduced to simulate possible limitations of real-time target tracking, resulted in less than 3% loss in dose homogeneity.
Resumo:
The clinical trials of tumor therapy using heavy ions beam C-12 are now in progress at Institute of Modem Physics in Lanzhou. In order to achieve the precise radiotherapy with the high energy C-12 beam in active pencil beam scanning mode, we have developed an ionization chamber(IC) as an online monitor for beam intensity and also a dosimeter after calibration. Through the choosing of working gas and voltage, optimizing of the electrics and the read-out system, calibrating the linearity, the detector system provide us one of the simple and highly reliable way to monitoring the beam during the active pencil beam scanning treatments. The measurement results of this detector system show that it could work well under the condition of high energy C-12 beam in active pencil beam scanning mode.
Resumo:
We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au + Au collisions below the nominal injection energy at the BNL Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance solenoidal tracker at RHIC (STAR) detector at root s(NN) = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density dN/dy in rapidity y, average transverse momentum < p(T)>, particle ratios, elliptic flow, and Hanbury-Brown-Twiss (HBT) radii are consistent with the corresponding results at similar root s(NN) from fixed-target experiments. Directed flow measurements are presented for both midrapidity and forward-rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, < p(T)>, and particle ratios are discussed. These results also demonstrate that the capabilities of the STAR detector, although optimized for root s(NN) = 200 GeV, are suitable for the proposed QCD critical-point search and exploration of the QCD phase diagram at RHIC.
Resumo:
Recent experimental advances have made it possible to study spectroscopy in very heavy nuclei. We show that from the excited high-spin structure of transfermium isotopes, one may gain useful information on single-particle states for the superheavy mass region, which is the key to locating the anticipated 'island of stability'. In this work, we employ the Projected Shell Model for Cf, Fm, and No isotopes to study rotation alignment of the particles that occupy particular high-j intruder orbitals.
Resumo:
We have investigated the equation of state (EOS) and single particle (s.p.) properties of asymmetric nuclear matter within the framework of the Brueckner-Bethe-Goldstone approach. We have discussed particularly the effect of microscopic three-body forces (TBF). It is shown that the TBF affects significantly the predicted properties of nuclear matter at high densities.
Resumo:
A 52 MHz Radio Frequency Quadrupole (RFQ) linear accelerator (linac) is designed to serve as an initial structure for the SSC-Linac system (injector into Separated Sector Cyclotron). The designed injection and output energy are 3.5 keV/u and 143 keV/u, respectively. The beam dynamics in this RFQ have been studied using a three-dimensional Particle-In-Cell (PIC) code BEAMPATH. Simulation results show that this R,FQ structure is characterized by stable values of beam transmission efficiency (at least 95%) for both zero-current mode and the space charge dominated regime. The beam accelerated in the RFQ has good quality in both transverse and longitudinal directions, and could easily be accepted by Drift Tube Linac (DTL). The effect of the vane error and that of the space charge on the beam parameters have been studied as well to define the engineering tolerance for RFQ vane machining and alignment.
Resumo:
A series of Pr0.55Ca0.45MnO3 compounds with average particle size ranging from 2000 to 30 nm have been synthesized by the sol-gel method and their charge ordering (CO) and magnetic properties are investigated. It is observed that with particle size decreasing, the CO transition is gradually suppressed and finally disappears upon particle size down to 35 nm, while the ferromagnetism (FM) emerges and exhibits a nonmonotonous variation with a maximum at 45 nm samples. The FM components in all samples never reach long-range ordering but rather only show short-range clusters. A new explanation considering the coupling between lattice, charge, and spin in the system is raised to understand the suppression of the CO state, Both the competition between the CO/AFM and FM states and the core-shell model are employed to explain the variation of the FM phase. These results may provide a deeper insight into the physics of particle size effect on the charge ordering manganite.
Resumo:
A series of acrylic impact modifiers (AIMS) with different particle sizes ranging from 55.2 to 927.0 nm were synthesized by seeded emulsion polymerization, and the effect of the particle size on the brittle-ductile transition of impact-modified poly(vinyl chloride) (PVC) was investigated. For each AIM, a series of PVC/AIM blends with compositions of 6, 8, 10, 12, and 15 phr AIM in 100 phr PVC were prepared, and the Izod impact strengths of these blends were tested at 23 degrees C. For AIMs with particle sizes of 55.2, 59.8, 125.2, 243.2, and 341.1 nm, the blends fractured in the brittle mode when the concentration of AIM was lower than 10 phr, whereas the blends showed ductile fracture when the AIM concentration reached 10 phr. It was concluded that the brittle-ductile transition of the PVC/AIM blends was independent of the particle size in the range of 55.2-341.1 nm. When the particle size was greater than 341.1 nm, however, the brittle-ductile transition shifted to a higher AIM concentration with an increase in the particle size. Furthermore, the critical interparticle distance was found not to be the criterion of the brittle-ductile transition for the PVC/AIM blends.
Resumo:
Silica-supported Rh catalysts with different Rh particle dimensions were investigated for CO hydrogenation. The catalysts were characterized by various techniques such as TEM, H-2-TPR and N-2 adsorption to study the catalyst morphology, the size distributions of Rh particles and the silica pores. It was found that the distribution and the size of Rh particles were affected by the silica pores, and the metal grains were enclosed in the pores of the support, and thereby their growth was limited. The catalytic activity and selectivity to C-2-oxygenates for CO hydrogenation were found to be significantly controlled by the Rh particle sizes, and the higher activity and selectivity to C2-oxygenates were obtained over bigger Rh particles, within the range of the reported particle sizes.