239 resultados para Opiate Dependence
Resumo:
A series of silver films with different thickness were prepared under identical conditions by direct current magnetron sputtering. The optical properties of the silver films were measured using spectrophotometric techniques and the optical constants were calculated from reflection and transmission measurements made at near normal incidence. The results show that the optical properties and constants are affected by films' thickness. Below the critical thickness of 17 nm at which Ag film forms a continuous film, the optical properties and constants vary significantly as the thickness of films increases and then tends to a stable value which is reached at 41 nm. X-ray diffraction measurements were carried out to examine the structure and stress evolution of the Ag films as a function of films' thickness. It was found that the interplanar distance of (111) orientation decreases when the film thickness increases and tends to be close to that of bulk material. The compressive strains also decrease with increasing thickness. (C) 2007 Published by Elsevier B.V.
Resumo:
The effects of working pressure on properties of Al2O3 thin films are investigated. Transmittance of the Al2O3 thin film is measured by a Lambda 900 spectrometer. Laser-induced damage threshold (LIDT) is measured by a Nd:YAG laser at 355nm with a pulse width of 7ns. Microdefects were observed under a Nomarski microscope. The samples are characterized by optical properties and defect, as well as LIDT under the 355 nm Nd: YAG laser radiation. It is found that the working pressure has fundamental effect on the LIDT. It is the absorption rather than the microdefect that plays an important role on the LID T of Al2O3 thin film.
Resumo:
The orbitofrontal cortex is involved in the reinforcing effects of drugs of abuse. However, how the dynamic activity in OFC changes during opiate administration and withdrawal period has not been investigated. We first tested the effects of opiates and dr
Resumo:
Investigating the activities of the prefrontal cortex (PFC) in the process of addiction is valuable for understanding the neural mechanism underlying the impairments of the PFC after drug abuse. However, limited data are obtained from primate animals and few studies analyze Electroencephalogram (EEG) in the gamma band, which plays an important role in cognitive functions. In addition, it is yet unclear whether drug abuse affects the orbitofrontal cortex (OFC) and dorsolateral PFC (DLPFC) - the two most important subregions of the PFC - in similar ways or not. The aim of this study is to address these issues. We recorded EEG in the OFC and DLPFC in three rhesus monkeys. All animals received a course of saline (NaCl 0.9%, 2 ml) injection (5 days) followed by 10 days of morphine injection (every 12 h), and then a further series of saline injection (7 days). A main finding in the present study was that morphine decreased EEG power in all frequency bands in a short period after injection in both the OFC and DLPFC in monkeys. And gamma power decreased not just in short period after morphine injection but lasted to 12 h after injection. Moreover, we found that although the changes in EEG activities in the OFC and DLPFC at 30-35 min after injection were similar, the DLPFC was more sensitive to the effect of morphine than the OFC. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of morphine on hippocampal sensory gating (N40) during the development of morphine dependence and withdrawal were investigated in the double click auditory evoked potential (EP) suppression paradigm. Rats were made dependent upon morphine hydrochloride by a series of injections (every 12h) over 6 days, followed by withdrawal after stopping morphine administration. Hippocampal gating was examined during the development of dependence and withdrawal. Moreover, the DA antagonist haloperidol was used to assess the contribution of dopamine to hippocampal gating induced by morphine. Our results showed that the morphine-treated rats exhibited significantly disrupted hippocampal gating during the development of morphine dependence and this disrupted gating was partially reversed by haloperidol pretreatment. In contrast, there was significantly enhanced hippocampal gating at the fifth and sixth days of withdrawal. The dynamics of hippocampal gating during the development of morphine dependence and withdrawal suggests the interaction between the hippocampus and opioids. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The attentional blink reveals the limits of the brain's ability in information processing. It has been extensively studied in people with neurological and psychiatric disturbances to explore the temporal characteristics of information processing and exami
Resumo:
Previous studies have shown that opioid transmission plays an important role in learning and memory. However, little is known about the course of opiate-associated learning and memory deficits after cessation of chronic opiate use in a behavioral animal m
Resumo:
The hippocampus, being sensitive to stress and glucocorticoids, plays significant roles in certain types of learning and memory. Therefore, the hippocampus is probably involved in the increasing drug use, drug seeking, and relapse caused by stress. We have studied the effect of stress with morphine on synaptic plasticity in the CA1 region of the hippocampus in vivo and on a delayed-escape paradigm of the Morris water maze. Our results reveal that acute stress enables long-term depression (LTD) induction by low-frequency stimulation (LFS) but acute morphine causes synaptic potentiation. Remarkably, exposure to an acute stressor reverses the effect of morphine from synaptic potentiation ( similar to 20%) to synaptic depression ( similar to 40%), precluding further LTD induction by LFS. The synaptic depression caused by stress with morphine is blocked either by the glucocorticoid receptor antagonist RU38486 or by the NMDA-receptor antagonist D-APV. Chronic morphine attenuates the ability of acute morphine to cause synaptic potentiation, and stress to enable LTD induction, but not the ability of stress in tandem with morphine to cause synaptic depression. Furthermore, corticosterone with morphine during the initial phase of drug use promotes later delayed-escape behavior, as indicated by the morphine-reinforced longer latencies to escape, leading to persistent morphine-seeking after withdrawal. These results suggest that hippocampal synaptic plasticity may play a significant role in the effects of stress or glucocorticoids on opiate addiction.
Resumo:
Stress impairs hippocampal long-term potentiation (LTP), but it is unknown whether the stress evoked by opiate withdrawal has the same effect. Here the authors report that opiate withdrawal for 4 days does not influence basal synaptic transmission, but re
Resumo:
Adaptive changes in brain areas following drug withdrawal are believed to contribute to drug seeking and relapse. Cocaine withdrawal alters the expression of GluR1 and GluR2/3 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) rec
Resumo:
Subiculum receives output of hippocampal CAI neurons and projects glutamatergic synapses onto nucleus accumbens (NAc), the subicular-NAc pathway linking memory and reward system. It is unknown whether morphine withdrawal influences synaptic plasticity in
Resumo:
The temperature dependence of hole spin relaxation time in both neutral and n-doped ultrathin InAs monolayers has been investigated. It has been suggested that D'yakonov-Perel (DP) mechanism dominates the spin relaxation process at both low and high temperature regimes. The appearance of a peak in temperature dependent spin relaxation time reveals the important contribution of Coulomb scatterings between carriers to the spin kinetics at low temperature, though electron-phonon scattering becomes dominant at higher temperatures. Increased electron screening effect in the n-doped sample has been suggested to account for the shortened spin relaxation time compared with the undoped one. The results suggest that hole spins are also promising for building solid-state qubits.