102 resultados para Oil pollution of soils
Resumo:
Abstract: Experiments to determine the horizontal static bearing capacity are carried out first. The static bearing capacity is a reference for choosing the amplitudes of dynamic load. Then a series of experiments under dynamic horizontal load are carried out in laboratory to study the influences of factors, such as the scales of bucket, the amplitude and frequency of load, the density of soils etc.. The responses of bucket foundations in calcareous sand under horizontal dynamic load are analyzed according to the experimental results. The displacements of bucket and sand layer are analyzed.
Resumo:
There is increasing recognition that protozoa is very useful in monitoring and evaluating water ecological healthy and quality. In order to study the relationship between structure and function of protozoan communities and water qualities, six sampling stations were set on Lake Donghu, a hypereutrophic subtropical Chinese lake. Microbial communities and protists sampling from the six stations was conducted by PFU (Polyurethane foam unit) method. Species number (S), diversity index (DI), percentage of phytomastigophra, community pollution value (CPV), community similarity and heterophy index (HI) were mensurated. The measured indicators of water quality included total phosphorus (TP), dissolved oxygen (DO), Chemical oxygen demand (COD), NH4 (+), NO2 (-) and NO3-. Every month water samples from stations I, II, III, IV were chemically analyzed for a whole year, Among the chemically analyzed stations, station I was the most heavily polluted, station II was the next, stations III and IV had similar pollution degrees. The variable tendencies of COD, TP, NH3, NO2-, NO3-, and DO during the year was approximately coincident among the six stations. Analysis from the community parameters showed that the pollution of station 0 was much more serious than others, and station V was the most slight. Of the community parameters, CPV and HI were sensitive in reflecting the variables of the water quality. Community similarity index was also sensitive in dividing water qualities and the water quality status of different stations could be correctly classified by the cluster analysis. DI could reflect the tendency of water quality gradient, species number and percentage of Phytomastigophora was not obvious in indicating the water quality gradient.
Resumo:
The mass spectrum analysis of crystal face (100) and (111) and the photoluminescence analysis of crystal face (100) in the photoelectronic material InP were given. The Hall coefficient, charge carrier concentration and Hall mobility were determined. Experimental results indicate that the pollution of silicon is predominant.
Resumo:
酸化油是油脂工业中以皂脚、油脚经酸化处理得到的产品。它的主要成分是游离脂肪酸及中性油,是生产脂肪酸的重要原料,但生产过程中有水解废水的产生,若将其直接排放,既污染了环境又浪费了资源。生物柴油的主要成分是脂肪酸甲酯(fatty acid methyl ester,FAME)。它具有原料丰富而且可再生、可生物降解、无毒、不含芳香烃、二氧化硫等污染物、燃烧排放低、闪点高、运输储存安全等特点。作为石化柴油的潜在替代能源,生物柴油因其独特的优越性和现实的需求越来越受到关注。利用酸化油生产生物柴油不仅可以缓解生物柴油原料不足问题,还可解决酸化油所带来的环境问题。
The convertion of acid oil to biodiesel by use of immobilized Candida lipase absorbed on textile cloth was studied in a fixed bed reactor, which can not only reduce the environmental pollution of acid oil, but also produce a substitute for petroleum diesel. The acid oil mixed with methanol was pumped into three fixed bed reactors in series, and the methanol was added with the molar flow rate same as the acid oil in each reactor. The effects of enzyme content, solvent content, water content, flow rate of reactant and temperature on the enzymatic reaction were analyzed. The result of orthogonal experiments indicates that the optimal transesterification can be performed under the following conditions: immobilized lipase content in acid oil, 20% ; hexane content in acid oil, 10% ; water content in acid oil, 10%, reaction temperature, 50 ℃ ; and flow rate of reactant, 0.08 g/rain. Under these conditions, the FAME content of 90.18% in the product is obtained. The immobilized lipase can be reused with relatively stable activity after glycerol being removed from the surface. By refining, most of the chemical and physical properties of biodiesel will meet the American and Germany biodiesel standards and exceed the Chinese standard of 0^# petroleum diesel except for carbon residue, density and kinematic viscosity.
Resumo:
Granules of waste tires were pyrolyzed tinder vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na2CO3, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 degrees C to 600 degrees C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 degrees C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 degrees C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) similar to 205 degrees C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt% which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na2CO3 addition. Pyrolysis gas was mainly composed of H-2, CO, CH4, CO2, C2H4 and C2H6. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.
Resumo:
随着工农业的快速发展,土壤重金属尤其Cd和Pb污染日益严重。筛选和培育具有重金属低积累特性的农作物排异品种被认为是当前应对土壤重金属污染最为合理和有效的途径之一。本文通过盆栽试验、大田试验和砂培试验,研究了大白菜品种对Cd和Pb的吸收和积累的品种差异、对Cd、Pb胁迫的响应以及大白菜安全生产的调控技术,得出以下结论: 1) 盆栽梯度试验中,80种大白菜地上部对Cd的吸收存在显著差异(p < 0.05)。在3种Cd处理下(1.0, 2.5和5.0 mg/kg),80种大白菜Cd含量浓度范围分别为(mg/kg) 0.22–2.46, 0.90–14.10和2.03–18.01, 其平均值分别为 0.79, 3.76 和6.79 mg/kg DW。大白菜对Cd胁迫具有较强的耐性。大田试验中,15种大白菜的富集系数和转运系数与盆栽梯度试验的结果基本一致。排异植物的筛选和鉴定标准包括:(1)该植物的地上部和根部的Cd含量都很低或者可食部位低于有关标准;(2) 富集系数(BF) < 1.0;(3) 转运系数(TF) < 1.0;(4)该植物具有较高的Cd耐性,在较高的Cd污染下能够正常生长且生物量无显著下降。采用此标准,结合盆栽梯度试验和大田试验结果,北京新3号、绿星70和丰源新3号可鉴定为Cd排异品种。秋傲和赛新5号具有排异Cd特性,但其对Cd的耐性较差。 2) 盆栽梯度试验中,在Pb投加浓度为500和1500 mg/kg处理下,30种大白菜地上部对Pb的吸收存在显著差异 (p < 0.05),其Pb浓度的范围分别为:0.52–8.68 和1.86–16.20 mg/kg, 其平均值分别为3.01 和6.87 mg/kg DW。并且,随着Pb浓度的增加,白菜地上部Pb含量有随之增加的趋势。大白菜对Pb具有较强的耐性。低浓度的Pb处理对大白菜的生物具有一定的促进作用。结合盆栽试验和大田试验的结果,秋傲、世博秋抗和福星80可鉴定为Pb排异大白菜品种。 3) 砂培试验中,在Cd和Pb胁迫下,大白菜地上部的丙二醛(MDA)含量增加,随着Cd处理浓度的增加,超氧化物歧化酶(SOD)活性呈现先下降后上升接着下降的趋势,酸菜王的SOD活性要高于北京新3号SOD的活性。随着Pb处理浓度的增加,福星80地上部的SOD活性随之增加,而绿星大棵菜地上部的SOD活性先下降后增加。在不同梯度的Cd处理下,大白菜地上部的可溶性蛋白(SP)含量未见显著降低,甚至有所增加,而在不同梯度的Pb处理下,大白菜地上部的SP含量有所降低。 4) 施用改良剂可升高土壤的pH值和降低土壤中的有效态Cd,从而对大白菜的生长具有促进作用。施用改良剂可显著降低大白菜对Cd和Pb的吸收和累积。
Resumo:
研究用植物油淋洗修复多环芳烃污染土壤的效果、植物油淋洗剂再生与回用的可行性、植物油的生态效应。采用了批处理法和土柱法对多环芳烃污染土壤进行修复,结果表明:油土比1:1的条件下,批处理法可以去除土壤中90%以上的多环芳烃,多环芳烃的质量转移过程可以用经验模型模拟。恰当的运行条件下,土柱法可去除土壤中90%以上的多环芳烃,但是根据土壤中多环芳烃浓度的高低,植物油的用量是批处理法的2~4倍。无论是批处理法,还是土柱法,土壤水分含量都影响了植物油去除土壤中多环芳烃的能力。采用了化学氧化法、溶剂提取法和吸收剂吸收法对植物油进行再生,结果表明:臭氧和双氧水能氧化植物油中的多环芳烃,但不理想,紫外线及双氧水在pH=3的条件下可氧化植物油中76.5%的多环芳烃。按植物油/乙醇1:3的比例对植物油进行6级处理可氧化植物油中87%的多环芳烃。活性炭二级处理可去除植物油中87%的多环芳烃,实现植物油的再生。高等植物生长实验说明土壤中的植物油对燕麦及萝卜的生长起了抑制作用,土壤呼吸实验证明,残留在土壤中的植物油可被生物降解,但是必须保证良好的氧气及营养供应。用植物油修复多环芳烃污染土壤具有可行性。
Resumo:
The present study has attempted to investigate phase inversion and frictional pressure gradients during simultaneous vertical flow of oil and water two-phase through upward and downward pipes. The liquids selected were white oil (44 mPa s viscosity and 860 kg/m3 density) and water. The measurements were made for phase velocities varying from 0 to 1.24 m/s for water and from 0 to 1.87 m/s for oil, respectively. Experiments were carried either by keeping the mixture velocity constant and increasing the dispersed phase fraction or by keeping the continuous phase superficial velocity constant and increasing the dispersed phase superficial velocity. From the experimental results, it is shown that the frictional pressure gradient reaches to its lower value at the phase inversion point in this work. The points of phase inversion are always close to an input oil fraction of 0.8 for upward flow and of 0.75 for downward flow, respectively. A few models published in the literature are used to predict the phase inversion point and to compare the results with available experimental data. Suitable methods are suggested to predict the critical oil holdup at phase inversion based on the different viscosity ratio ranges. Furthermore, the frictional pressure gradient is analyzed with several suitable theoretical models according to the existing flow patterns. The analysis reveals that both the theoretical curves and the experimental data exhibit the same trend and the overall agreement of predicted values with experimental data is good, especially for a high oil fraction.
Resumo:
To avoid the limitation of the widely used prediction methods of soil organic carbon partition coefficients (K-OC) from hydrophobic parameters, e.g., the n-octanol/water partition coefficients (K-OW) and the reversed phase high performance liquid chromatographic (RP-HPLC) retention factors, the soil column liquid chromatographic (SCLC) method was developed for K-OC prediction. The real soils were used as the packing materials of RP-HPLC columns, and the correlations between the retention factors of organic compounds on soil columns (k(soil)) and K-OC measured by batch equilibrium method were studied. Good correlations were achieved between k(soil) and K-OC for three types of soils with different properties. All the square of the correlation coefficients (R-2) of the linear regression between log k(soi) and log K-OC were higher than 0.89 with standard deviations of less than 0.21. In addition, the prediction of K-OC from K-OW and the RP-HPLC retention factors on cyanopropyl (CN) stationary phase (k(CN)) was comparatively evaluated for the three types of soils. The results show that the prediction of K-OC from k(CN) and K-OW is only applicable to some specific types of soils. The results obtained in the present study proved that the SCLC method is appropriate for the K-OC prediction for different types of soils, however the applicability of using hydrophobic parameters to predict K-OC largely depends on the properties of soil concerned. (C) 2004 Elsevier B.V. All rights reserved.