113 resultados para Offshore oil and gas leases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high quality NaA zeolite membrane, which shows a H-2/n-C4H10 permselectivity of 106, has been synthesized on a seeded alpha-Al2O3 support by a multistage synthesis method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A promising application for biomass is liquid fuel synthesis, such as methanol or dimethyl ether (DME). Previous studies have studied syngas production from biomass-derived char, oil and gas. This study intends to explore the technology of syngas production from direct biomass gasification, which may be more economically viable. The ratio of H-2/CO is an important factor that affects the performance of this process. In this study, the characteristics of biomass gasification gas, such as H-2/CO and tar yield, as well as its potential for liquid fuel synthesis is explored. A fluidized bed gasifier and a downstream fixed bed are employed as the reactors. Two kinds of catalysts: dolomite and nickel based catalyst are applied, and they are used in the fluidized bed and fixed bed, respectively. The gasifying agent used is an air-steam mixture. The main variables studied are temperature and weight hourly space velocity in the fixed bed reactor. Over the ranges of operating conditions examined, the maximum H-2 content reaches 52.47 vol%, while the ratio of H-2/CO varies between 1.87 and 4.45. The results indicate that an appropriate temperature (750 degrees C for the current study) and more catalyst are favorable for getting a higher H-2/CO ratio. Using a simple first order kinetic model for the overall tar removal reaction, the apparent activation energies and pre-exponential factors are obtained for nickel based catalysts. The results indicate that biomass gasification gas has great potential for liquid fuel synthesis after further processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four models are employed in the landscape change detection of the newly created wetland. The models include ones for patch connectivity. ecological diversity, human impact intensity and mean center of land cover. The landscape data of the newly created wetland in Yellow River Delta in 1984, 1991, and 1996 are produced from the unsupervised classification and the supervised classification on the basis of integrating Landsat TM images of the newly created wetland in the four seasons of the each year. The result from operating the models into the data shows that the newly created wetland landscape in Yellow River Delta had a great chance. The driving focus of the change are mainly from natural evolution of the newly created wetland and rapid population growth, especially non-peasant population growth in Yellow River Delta because a considerable amount of oil and gas fields have been found in the Yellow River Delta. For preventing the newly created wetland from more destruction and conserving benign Succession of the ecosystems in the newly created wetland, six measures are suggested on the basis of research results. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of analyzing the principle and realization of geo-steering drilling system, the key technologies and methods in it are systematically studied in this paper. In order to recognize lithology, distinguish stratum and track reservoirs, the techniques of MWD and data process about natural gamma, resistivity, inductive density and porosity are researched. The methods for pre-processing and standardizing MWD data and for converting geological data in directional and horizontal drilling are discussed, consequently the methods of data conversion between MD and TVD and those of formation description and adjacent well contrast are proposed. Researching the method of identifying sub-layer yields the techniques of single well explanation, multi-well evaluation and oil reservoir description. Using the extremum and variance clustering analysis realizes logging phase analysis and stratum subdivision and explanation, which provides a theoretical method and lays a technical basis for tracing oil reservoirs and achieving geo-steering drilling. Researching the technique for exploring the reservoir top with a holdup section provides a planning method of wellpath control scheme to trace oil and gas reservoir dynamically, which solves the problem of how to control well trajectory on condition that the layer’s TVD is uncertain. The control scheme and planning method of well path for meeting the demands of target hitting, soft landing and continuous steering respectively provide the technological guarantee to land safely and drill successfully for horizontal, extended-reach and multi-target wells. The integrative design and control technologies are researched based on geology, reservoir and drilling considering reservoir disclosing ratio as a primary index, and the methods for planning and control optimum wellpath under multi-target restriction, thus which lets the target wellpath lie the favorite position in oil reservoir during the process of geo-steering drilling. The BHA (bottomhole assembly) mechanical model is discussed using the finite element method, and the BHA design methods are given on the basis of mechanical analyses according to the shape of well trajectory and the characteristics of BHA’s structure and deformation. The methods for predicting the deflection rate of bent housing motors and designing their assemblies are proposed based on the principle of minimum potential energy, which can clearly show the relation between the BHA’s structure parameters and deflection rate, especially the key factors’ effect to the deflection rate. Moreover, the interaction model between bit and formation is discussed through the process of equivalent formation and equivalent bit considering the formation anisotropy and bit anisotropy on the basis of analyzing the influence factors of well trajectory. Accordingly, the inherence relationship among well trajectory, formation, bit and drilling direction is revealed, which lays the theory basis and technique for predicting and controlling well trajectory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rugged surface topography determined the seismic data acquisition construction conditions and the seismic wave explosive and receiver quality in Qaidam Basin. This dissertation systematically researched the seismic acquisition, imaging process and the attribute analysis techniques of complicated oil and gas reservoir. The main research achievements and cognitions are as follows: 1. Through the stimulation effects research and analysis from the aspect of lithologic water-containing differences, it’s specific that stable hydrous sand layer can effectively enhance the stimulation effects combined with the corresponding field tests. The seismic data S/N ratio has been improved due to the combination explosive stimulation. Through the fold number and maximum offset analyses of target horizon, the complicated geometry has been optimized and the S/N ratio of seismic data has been improved, which made an important basis for improvement of 3D seismic data. 2. It has been proved that the first arrival refraction static correction method under the model constraint of fine surface survey is suitable to the Qaidam Basin of western areas by the real seismic data processing. Although the refraction horizon of near surface has some changes in a certain extent, it’s steady basically. The refraction horizon can be continuously traced in sections, so it’s qualified for the refraction static correction method on the whole. 3. The research is based on the curved-ray pre-stack time migration techniques of rough topography, and improved the imaging precision of complex areas. This techniques adopted the constant and variable velocity scanning mode and enhanced the velocity analysis precision. The 3D pre-stack time migration techniques reasonably solved the imaging and velocity multiple solutions problems of steep-dip faults and the intersections of horizontal layers. What’s more, fine velocity analysis and mute are very important to enhance the imaging precision of the seismic data in complicated Wunan areas. 4. The 3D seismic data edge-preserving processing methods have been realized due to the image process techniques. Because this method uses the large range filter, it can attenuate the noise maximally. The faults, break points, lithologic pinchout points and lithologic body of small scale such as river will not be influenced by blur because of the edge-preserving characterization of the method which is really an effective assistant technique of low S/N ratio seismic data attribute analysis. 5. The use of spectral decomposition technique can effectively identify the reservoirs. The special geology body which will not be identified (or without obvious characters) in the seismic profile may be found through the details changes of different frequencies in the amplitude profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lithology of the buried hill of Triassic Budate group in Beier depression is epimetamorphic clastic rock and volcanic clastic rock stratum. Recently the favorable hydrocarbon show was discovered in buried hill of base rock, and large-duty industrial oil stream was obtained in some wells in Beier depression. Based on the information of seismos and wells, the tectonic framework, tectonic deformation times and faulted system of the Beier depression are comprehensively studied, then configuration, evolutional history, genetic type and distributed regularity of buried hill are defined. According to observing description and analysis of core sample, well logging and interpretive result of FMI, the lithological component, diagenetic type and diagenetic sequence of buried hill reservoir are confirmed, then reservoir space system of buried hill is distinguished, and vegetal feature, genetic mechanism and distributed regularity of buried hill fissure are researched, at the same time the quantitative relationship is build up between core fissures and fissures interpreted by FMI. After that fundamental supervisory action of fault is defined to the vegetal degree of fissure, and the fissure beneficial places are forecasted using fractal theory and approach. At last the beneficial areas of Budate group reservoir are forecasted by reservoir appraisal parameters optimization such as multivariate gradually regression analysis et. al. and reservoir comprehensive appraisal method such as weighing analyze and clustering procedure et. al. which can provide foundation for the next exploratory disposition. Such production and knowledge are obtained in this text as those: 1. Four structural layers and two faulting systems are developed, and four structural layers are carved up by three bed succession boundary surfaces which creates three tectonic distortional times homology. Three types of buried hill are divided, they are ancient physiognomy buried hill, epigenetic buried hill, and contemporaneous buried hill. 2. Reservoir space of Budate buried hill is mainly secondary pore space and fissure, which distributes near the unconformity and/or inside buried hill in sections. The buried hill reservoir experienced multi-type and multi-stage diagenetic reconstruction, which led to the original porosity disappeared, and multi secondary porosity was created by dissolution, superficial clastation and cataclasis et. al. in diagenetic stage, which including middle crystal pore, inter crystal pore, moldic pore, inter particle emposieu, corrosion pore space and fissure et. al. which improved distinctly reservoir capability of buried hill. 3. The inner reservoir of buried hill in Beier depression is not stratigraphic bedded construction, but is fissure developing place formed by inner fault and broken lithogenetic belt. The fissures in inner reservoir of buried hill are developed unequally with many fissure types, which mainly are high angle fissure and dictyonal fissures and its developing degree and distribution is chiefly controlled by faulting. 4. The results of reservoir comprehensive evaluate and reservoir predicting indicates that advantageous areas of reservoir of buried hill chiefly distributes in Sudeerte, Beixi and Huoduomoer, which comprehensive evaluate mainly Ⅱand Ⅲ type reservoir. The clues and results of this text have directive significance for understanding the hydrocarbon reservoir condition of buried hill in Beier depression, for studying hydrocarbon accumulated mechanism and distributed regularity, and for guiding oil and gas exploration. The results of this text also can enrich and improve nonmarine hydrocarbon accumulated theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, with the discovery oil and gas reservoirs in volcanic rocks, the exploration and development of these reservoirs have attracted widespread attention because of the urgent need for increasing oil and gas production in the world and volcanic rocks has currently become an important exploration target in Liaohe depression. The study area of this dissertation is in the middle section of the easternern sag of Liaohe depression that have been confirmed by studying structural fractures, which constitute a key factor impacting volcanic rocks reservoirs. Substantial reserves and large production capacity in the areas with widely distributed volcanic rocks are important reasons for examining volcanic rocks in the study area. The study began with classification and experimental data analysis of volcanic rocks fractural formation, then focused on the mechanism of fracturing and the development of volcanic rocks structural fracture prediction methodology.and Lastly, predicted volcanic rocks structural fracture before drilling involved a comprehensive study of the petroleum geology of this area, which identified favorable traps thereby reducing exploration risks and promoting the exploration and development of volcanic rocks reservoirs. 3Dstress and 3Dmove software were applied to predict structural fracture by combining the core data, well-logging data and seismic data together and making the visualization of a fracture possible. Base on the detailed fracture prediction results, well OuO48 and well Ou52 were drilled and successfully provided a basis for high efficiency exploration and development of fractured reservoir in the middle section of the eastern sag. As a result of what have been done, a new round of exploration of volcanic rocks was developed. Well OU48 and well OU52 successfully drilled in this area resulted in the in-depth study of the mechanism of structural fracture formation, technological innovation of structural fracture prediction of volcanic rocks , which guided to oil and gas exploration effectively and made it possible for high production of volcanic rocks. By the end of August 2005, the cumulative oil and gas production of Ou48 block were 5.1606 × 104 t and 1271.3× 104 m3 respectively, which made outstanding contributions to the oilfield development. Above all this work not only promoted exploration and structural fracture prediction in volcanic rocks in Liaohe depression, but also applied to in the low-permeability and fractured sandstone reservoir.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oil and gas potential of Northeast Asia is enormous, but the degree of exploration is very low in Northeast Asia (the degree is below 3%-10%).The reasons are as follows: First, it is relatively difficult to study the oil and gas bearing basins(OGB), which are of multiple types, in different tectonic settings, with complex geologic frameworks and with long-term geologic evolution. Secondly, because of the non-equilibrium in development of economy and regional market, application of theories and techniques and the research levels in different countries, the conclusions are not conformable, and even contradictory. Thirdly, most of the former researches were limited to one territory or one basin, and lack of systematical and in-depth study on geotectonic evolution, classification of basins, and the evaluation of hydrocarbon resources. In this thesis, integrated study of the regional tectonic feature and basin features of Northeast Asia was done, to understand the basin evolution history and the controlling action on oil and gas. Then, new conclusions are and exploration proposals are as following: 1. Geotectonic evolution in Northeast Asia: The main structural motion system in Paleozoic Era was longitudinal, and in Meso-cenozoic was latitudinal with the Pacific Ocean. The whole evolution history was just the one of pulling-apart, cutting-out, underthrusting and collision of the Central Asia- Mongolia Ocean and the Pacific Ocean. 2. The evolution characteristics of basins in Northeast Asia: mainly developed from longitudinal paste-up, collision and relaxation rifting motion in Paleozoic-Early Mesozoic Era and from underthrust, accretion, and receding of subducted zone of the Pacific Ocean in Late Mesozoic Era-Cenozoic Era. 3. The research in basin classification of Northeast Asia: According to geotectonic system, the basins can be classified into three types: intracratonic, pericratonic and active zone basin. And they can be further classified into 18 different types according to genetic mechanism and dynamic features. 4. The master control factors of oil and gas accumulation in Northeast Asia: high quality cap-rock for craton and pericrationic basin, the effective source rock and high quality cap-rock for Mesozoic rifted basins, intra-arc, fore-arc and back-arc basins. Graded exploration potential of oil and gas for basin in Northeast Asia according to 7 factor, hereby, divided the oil and gas potential of basins into 5 levels. 5. Evaluation of hydrocarbon resources: The difference of resource potential among these basins is huge in Northeast Asia. The evaluation of Mesozoic rifted basin and Pacific Ocean basin showed that the large scale rifted basin and retroarc basin(including backarc marginal sea basin) have great resource potential. 6. The writer believes that the next step should pay more attention to the evaluation of petroleum resource in Far East part of Russia and trace them. On the other hand, according to integrated analysis of oil/gas resource potential and the operation difficulty in this area, suggests that East-Siberia basin, East-Gobi-Tamchag basin, Sakhalin basin, North-Okhotck basin, West-Kamchatka basin could be as cooperation priority basins in future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, taking Madong district of Huanghua depression as a case, based on the theory of sequence stratigraphy, sedimentology, reservoir geology and geophysics, according to core analysis, seismic attribute analysis, logging constrained inversion, multi-data correlation of strata, reservoir modeling, etc. the lower and middle first member of Shahejie formation of the study area was forecasted and evaluated. As a result, a number of reservoir prediction and remaining oil distribution methods suitable to oil exploitation of gravity flow channel reservoir are presented. Scientific foundation is provided to the next adjustment of development program and exploitation of the remaining oil. According to high resolution sequence stratigraphy theory, precise stratigraphic framework was founded, the facies types and facies distribution were studied under the control of stratigraphic framework, the technologies of seismic attribute abstraction and logging constrained inversion. Result shows that gravity flow channel, as the main facies, developed in the rising period of base-level cycle, and it was formed during the phase of contemporaneous fault growth. As the channel extends, channel width was gradually widened but thickness thined. The single channels were in possession of a great variety of integrated modes, such as isolated, branching off, merging and paralleling, forming a kind of sand-mud interblending complex sedimentary units. Reservoir quality differs greatly in vertical and horizontal direction, and sedimentary microfacies is main controlling factor of the reservoir quality. In major channel, deposition thickness is great, and petrophysical property is well. While in marginal channel, reservoir is thinner, and petrophysical property is unfavorable. Structure and reservoir quality are main factors which control the oil and gas distribution in the study area. On the basis of the research about the reservoir quality, internal, planar and 3-D reservoir heterogeneities are characterized, and the reservoir quality was sorted rationally. At last, based on the research of reservoir numerical simulation of key well group, combined with reservoir performance analysis and geological analysis above, remaining oil distribution patterns controlled by internal rhythm of gravity flow channel were set up. Through this research, a facies-restrained reservoir prediction method integrating multi-information was presented, and potential orientation of remaining oil distribution in gravity flow channel reservoir is clarified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the development of petroleum exploration in Gaoyou Depression, both old and new areas have been the active exploration targets, so the study of petroleum accumulation is significant to the petroleum exploration in the study area and the integrated oil and gas accumulation theory. Based on hydrocarbon accumulation theory and systematical research methods and combined with the structural characteristics of Gaoyou Depression, Chenbao and East of Chenbao were selected as the study areas in this dissertation, oil and gas migration pathways, accumulation periods, as well as accumulation models were studied, and favorable exploration targets were proposed. There develop three sets source rocks, which are Tai-2 Member, Fu-2 Member and Fu-4 Member respectively. Tai-2 Member is the predominant source rock in the eastern part. Fu-2 Member mainly occurs in the northern slope, while Fu-4 Member develops in the deep depression. In the study area, oil mainly comes from Fu-2 Member of Liuwushe subsag. The lower limit of TOC is 0.4%, and active source rock mostly distributed in the south fault-step zone. The source rock in Liuwushe subsag began to generate hydrocarbon in the late of Dainan depositional stage and the threshold was 2300m. The macro and micro characteristics of reservoirs and the reservoir heterogeneity characteristics of the Fu-1 Member were studied systematicly. The results show that Fu-1 Member, which has better reservoir properties, are medium porosity-medium permeability reservoir. The reservoir permeability has good correlation with porosity connectivity. The reservoirs have strong dissolution, pores are mainly thin to medium throat, and throat radii are distributed concentratedly, the sorting is good and pore structures are homogeneous. Sandstone reservoirs whether in the plan view, interlayer or in layers have a certain degree of heterogeneity, in particular, the heterogeneity in layers directly affect and control the oil and gas migration and accumulation. By analyzing the lithology correlation of the fault walls, shale smear, cross section stress, the configuration of fracture active periods and hydrocarbon generation and expulsion periods and fuzzy comprehensive evaluation, the main faults sealing were evaluated. The results show that the faults in Chenbao and East of Chenbao had poor sealing properties in Sanduo period and could be used as the migration pathways at that time. After Sanduo period, the tectonic stress fields in the area changed largely, and, consequently, the fault properties converted from tensional shear to compressive shear, the faults changed progressively from close to open, so the faults sealing became better and were conducive to the preservation of oil and gas reservoirs. According to the seismic event suspension modes and profile configurations above and under the unconformities, combined with tectonic evolutions of the study areas, the unconformity types can be classified into truncation unconformity, overlapped unconformity and parallel unconformity and the distribution characteristics of unconformities in the plan view was also studied. The unconformity structure was divided into basal conglomerate, weathered clay and semi-weathered layer vertically in the study area and this kind of structure make unconformities to be effective oil and gas migration pathways and is significant to hydrocarbon accumulation in a parts of areas. With the analyses of typical oil and gas reservoirs in the study area, combined with the research results of pathway systems, hydrocarbon accumulation models were established and the oil and gas accumulation laws in Chenbao and East of Chenbao analyzed. The oil and gas came from Liuwushe subsag and Liuliushe subsag. The oil and gas from Liuwushe subsag mainly migrated from the structural high parts into the fault-step zone along strata in northeast direction, a part of them migrated upward into the fault-step zone and the Wubao low uplift along Wu-1 Fault in northeast direction. The oil and gas from Liuliushe subsag mainly migrated into the upper reservoirs through Wu-2 fault, and lesser oil and gas migrated into the fault-step zone because of the controls of cross-section orientation, depression center and the hydrocarbon formation tendency. The favorable exploration targets in Chenbao and East of Chenbao have been concluded: the southern fault-step zone is a favorable oil and gas accumulation zone of Liuwushe subsag, and they are fault block reservoirs where fault acted as the barriers, the main target intervals are Fu-1 Member and Fu-3 Member in palaeocene; Oil and gas in the middle and northern fault-step zone mainly laterally migrated from the south areas, and the main target interval is Fu-3 Member in palaeocene; Fu-1 Member and the reserviors above the Wubao subsag are still the focuses in future explorations. The results of this study have important guiding significance for the future oil and gas exploration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the development of oil and gas field exploration, it becomes harder to search new reserves. So a higher demand of seismic exploration comes up. Now 3C3D seismic exploration technology has been applied in petroleum exploration domains abroad. Comparing with the traditional P-wave exploration, the seismic attributes information which provided by 3C3D seismic exploration will increase quickly. And it can derive various combined parameters. The precision of information about lithology, porosity, fracture, oil-bearing properties, etc which estimated by above parameters was higher than that of pure P-wave exploration. These advantages mentioned above lead to fast development of 3C3D seismic technology recently. Therefore, how to apply the technology in petroleum exploration field in China, how to obtain high quality seismic data, and how to process and interpret real data, become frontier topics in geophysical field nowadays, which have important practical significance in research and application. In this paper, according to the propagation properties of P-wave and converted wave, a study of 3C3D acquisition parameters design method was completed. Main parameters included: trace interval, shot interval, maximum offset, bin size, the interval of receiving lines, the interval of shooting lines, migration aperture, maximum cross line distance, etc. Their determination principle was given. The type of 3C3D seismic exploration geometry was studied. By calculating bin attributes and analyzing parameters of geometry, some useful conclusions were drawn. With the method in this paper, real geometries for continental lithology stratum gas reservoir and fractured gas reservoir were studied and determined. In the static method of multi-wave, the near surface P-wave, S-wave parameter investigation method has been advanced, and this method has been applied for the patent successfully; the near surface P-wave, S-wave parameter investigation method and the converted refraction wave first arrival static techniques have been integrally used to improve the effectiveness of converted wave static. In the aspect of converted wave procession, the rotation of horizontal component data, the calculation of converted wave common conversion bin, the residual static of converted wave, the velocity analysis of the common conversion point (CCP), the Kirchhoff pre-stack time migration of converted wave techniques have been applied for setting up the various 3C3D seismic data processing flows based on different geologic targets, and the high quality P-wave, converted-wave profiles have been acquired in the actual data processing. In the aspect of P-wave and converted-wave comprehensive interpretation, the thoughts and methods of using zero-offset S-wave VSP data to calibrate horizon have been proposed; the method of using P-wave and S-wave amplitude ratio to predict the areas of oil and gas enrichment has been studied; the method of inversion using P-wave combined with S-wave has been studied; the various P-wave, S-wave parameters(velocity ratio, amplitude ratio, poisson ratio) have been used to predict the depth, physical properties, gas-bearing properties of reservoirs; the method of predicting the continental stratum lithology gas reservoir has been built. The above techniques have all been used in various 3D3C seismic exploration projects in China, and the better effects have been gotten. By using these techniques, the 3C3D seismic exploration level has been improved.