53 resultados para Normal-hearing
Resumo:
Human hepatoma and normal liver cells were irradiated with C-12(6+), ion beams (LET= 96.05 keV/mu m) and gamma-rays at Heavy Ion Research Facility in Lanzhou (HIRFL). The chromatid breaks and break types were detected using the premature chromosome condensation technique. Our experimental results showed that chromatid breaks seem to have a good relation with C-12(6+) absorbed dose and C-12(6+) are more effective to induce chromatid breaks as compared to they-rays. For C-12(6+) ion irradiation the major break was isochromatid break, while chromatid breaks were dominant for gamma-ray irradiation. We also observed that the Relative Biology Effectiveness (RBE) of C-12(6+) ion is about 2.5 times higher than that of gamma-rays.
Resumo:
The hydrodehalogenation of aromatic halides, catalyzed by Pd/C in aqueous solutions, yields arenes in short reaction times at room temperature under normal pressure. The nature of the solvents has an important influence on the reaction rates and the activity of the catalyst. The catalyst shows the highest activity in water. In the hydrodechlorination of 4-chlorohypnone, it was in water that C-Cl bond was easier to be hydrogenated, and in isopropanol that C=O was easier to be hydrogenated. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Modified nucleosides derived predominantly from transfer ribonucleic acid (tRNA) have been studied as possible tumor markers. In this paper a reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been applied to study 15 normal and modified nucleosides in serum. The nucleoside levels in normal human serum were established, and the concentrations of 15 nucleosides in serum from 19 cancer patients were determined, it was found that the concentrations of modified nucleosides were significantly higher in patient sera. Based on 15 nucleoside concentrations in serum, factor analysis could classify correctly 90% of cancer patients from the normal humans Further work showed that urine was slightly better than serum when determining nucleosides as biological marker candidates. More work is ongoing to determine the clinical usefulness of modified nucleosides as tumor markers.
Resumo:
Modified nucleosides, formed post-transcriptionally in RNA by a number of modification enzymes, are excreted in abnormal levels in the urine of patients with malignant tumors. To test their usefulness as tumor markers, and to compare them with the conventional tumor markers, a reversed-phase high-performance liquid chromatographic (RP-HPLC) method and a factor analysis method have been used to study the excretion pattern of nucleosides of breast cancer patients. A clear cut differentiation of the breast cancer group and the healthy individuals in two clusters without overlapping was obtained. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
This paper gives a capillary electrophoretic method for the separation of 15 urinary normal and modified nucleosides from cancer patients in less than 40 min. A 500 mmx50 mu m uncoated capillary column (437.5 mm to window) was used. The effects of the voltage and the sodium dodecyl sulfate (SDS) concentration in the buffer on the separation were studied. With reproducibilities of migration times better than 1.2% (R.S.D.) and determined concentrations better than 5-25%, depending on the concentrations of nucleosides in the urine, the analytical characteristics of the method were food. Using this developed method, the concentrations of 13 normal and modified nucleosides, extracted on a phenyl boronic acid affinity chromatography column, in 25 urines from patients of 14 kinds of cancer were determined. The levels (nmol/mol creatinine) of modified nucleosides in urines from cancer patients were increased as compared with those in normal urines. (C) 1998 Elsevier Science B.V.
Resumo:
Herein, we describe a simple and inexpensive method for forming superhydrophobic cloths with the highest water contact angle of close to 180 degrees, in which normal commercial cloths serving as pristine materials are modified with suitable gold micro/nanostructures.
Resumo:
We have investigated the inverted phase formation and the transition from inverted to normal phase for a cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer in solution-cast films with thickness about 300 nm during the process of the solution concentrating by slow solvent evaporation. The cast solvent is 1, 1,2,2-tetrachloroethane (Tetra-CE), a good solvent for both blocks but having preferential affinity for the minority PMMA block. During such solution concentrating process, the phase behavior was examined by freeze-drying the samples at different evaporation time, corresponding to at different block copolymer concentrations, phi. As phi increases from similar to 0.1 % (nu/nu), the phase structure evolved from the disordered sphere phase (DS), consisting of random arranged spheres with the majority PS block as I core and the minority PMMA block as a corona, to ordered inverted phases including inverted spheres (IS), inverted cylinders (IC), and inverted hexagonally perforated lamellae (IHPL) with the minority PMMA block comprising the continuum phase, and then to the lamellar (LAM) phase with alternate layers of the two blocks, and finally to the normal cylinder (NC) phase with the majority PS block comprising the continuum phase. The solvent nature and the copolymer solution concentration are shown to be mainly responsible for the inverted phase formation and the phase transition process.
Resumo:
The content and distribution of rare earth(RE) in normal human plasma have been investigated by ultrafiltration, FPLC and ICP-MS methods, The results showed that there are trace RE in normal human plasma, and their contents are in accordance with their abundance, The RE can bond with immunoglobulin G(IgG), transferrin(Tf) and albumin(Alb) species, but mostly bond with Tf.
Resumo:
Vibrational studies on the neuropentapeptide Leu5-enkephalin were performed for the crystal state where different specific conformations can arise. In the present case, the peptide adopts a double fused folded conformation (beta-turn), the presence of which in the crystal state is directly related to the nature of the solvent used for its crystallization. This study completes other work relating to similar conformations of isolated molecules. It can be seen that specific interactions in the crystal state perturb to a large extent the vibrational relationships between the amide frequencies and the specific sets of dihedral angles characteristic of the particular type of turn. The tyrosyl moiety and its frequency dependence on its hydrogen bond state was especially investigated both for the Fermi resonance and the hydroxyl bending modes.