136 resultados para Nonlocal plate equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20 degrees cone angle (or 10 degrees half-cone angle) is performed by using the mixed seventh-order up-wind biased finite difference scheme and sixth-order central difference scheme. The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch. The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer. Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow. The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations. The turbulent energy equation in the cylindrical coordinate is given and turbulent energy budget is studied. The computed results show that the effect of circumferential curvature on turbulence characteristics is not obvious.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, by use of the boundary integral equation method and the techniques of Green basic solution and singularity analysis, the dynamic problem of antiplane is investigated. The problem is reduced to solving a Cauchy singular integral equation in Laplace transform space. This equation is strictly proved to be equivalent to the dual integral equations obtained by Sih [Mechanics of Fracture, Vol. 4. Noordhoff, Leyden (1977)]. On this basis, the dynamic influence between two parallel cracks is also investigated. By use of the high precision numerical method for the singular integral equation and Laplace numerical inversion, the dynamic stress intensity factors of several typical problems are calculated in this paper. The related numerical results are compared to be consistent with those of Sih. It shows that the method of this paper is successful and can be used to solve more complicated problems. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a dynamic damage model in ductile solids under the application of a dynamic mean tensile stress is developed. The proposed model considers void nucleation and growth as parts of the damage process under intense dynamic loading (strain rates epsilon greater than or equal to 10(3) s(-1)). The evolution equation of the ductile void has the closed form, in which work-hardening behavior, rate-dependent contribution and inertial effects are taken into account. Meanwhile, a plate impact test is performed for simulating the dynamic fracture process in LY12 aluminum alloy. The damage model is incorporated in a hydrodynamic computer code, to simulate the first few stress reverberations in the target as it spalls and postimpact porosity in the specimen. Fair agreement between computed and experimental results is obtained. Numerical analysis shows that the influence of inertial resistance on the initial void growth in the case of high loading rate can not be neglected. It is also indicated that the dynamic growth of voids is highly sensitive to the strain rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We try to connect the theory of infinite dimensional dynamical systems and nonlinear dynamical methods. The sine-Gordon equation is used to illustrate our method of discussing the dynamical behaviour of infinite dimensional systems. The results agree with those of Bishop and Flesch [SLAM J. Math. Anal. 21 (1990) 1511].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Burgers suggested that the main properties of free-turbulence in the boundless area without basic flow might be understood with the aid of the following equation, which was much simpler than those of fluid dynamics, 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical behavior of dual phase steel plates is affected by internal stresses created during martensite transformation. Analytical modelling of this effect is made by considering a unit cell made of martensite inclusion in a ferrite matrix. A large strain finite element analysis is then performed to obtain the plane stress deformation state. Displayed numerically are the development of the plastic zone and distribution of local state of stress and strain. Studied also are the shape configuration of the martensite (hard-phase) that influences the interfacial condition as related to stress transmission and damage. Internal stresses are found to enhance the global flow stress after yield initiation in the ferrite matrix. Good agreement is obtained between the analytical results and experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A perturbational h4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes, the h4 accuracy of the perturbational scheme is verified using double precision arithmetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the idea proposed by Hu [Scientia Sinica Series A XXX, 385-390 (1987)], a new type of boundary integral equation for plane problems of elasticity including rotational forces is derived and its boundary element formulation is presented. Numerical results for a rotating hollow disk are given to demonstrate the accuracy of the new type of boundary integral equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dilatational plastic constitutive equation presented in this paper is proved to be in a form of generality. Based on this equation, the constitutive behaviour of materials at the moment of bifurcation is demonstrated to follow a loading path with the response as "soft" as possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To gain some insight into the behaviour of low-gravity flows in the material processing in space, an approximate theory has been developed for the convective motion of fluids with a small Grashof number Gr. The expansion of the variables into a series of Gr reduces the Boussinesq equation to a system of weakly coupled linearly inhomogeneous equations. Moreover, the analogy concept is proposed and utilized in the study of the plate bending problems in solid mechanics. Two examples are investigated in detail, i. e. the 2-dimensional steady flows in either circular or square infinite closed cylinder, which is horizontally imposed at a specified temperature of linear distribution on the boundaries. The results for stream function ψ, velocity u and temperature T are provided. The analysis of the influences of some parameters such as the Grashof number Gr and the Prandtl number Pr, on motions will lead to several interesting conclusions. The theory seems to be useful for seeking for an analytical solutions. At least, it will greatly simplify the complicated problems originally governed by the Navier-Stokes equation including buoyancy. It is our hope that the theory might be applicable to unsteady or 3-dimensional cases in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compressible laminar boundary-layer flows of a dilute gas-particle mixture over a semi-infinite flat plate are investigated analytically. The governing equations are presented in a general form where more reasonable relations for the two-phase interaction and the gas viscosity are included. The detailed flow structures of the gas and particle phases are given in three distinct regions : the large-slip region near the leading edge, the moderate-slip region and the small-slip region far downstream. The asymptotic solutions for the two limiting regions are obtained by using a seriesexpansion method. The finite-difference solutions along the whole length of the plate are obtained by using implicit four-point and six-point schemes. The results from these two methods are compared and very good agreement is achieved. The characteristic quantities of the boundary layer are calculated and the effects on the flow produced by the particles are discussed. It is found that in the case of laminar boundary-layer flows, the skin friction and wall heat-transfer are higher and the displacement thickness is lower than in the pure-gas case alone. The results indicate that the Stokes-interaction relation is reasonable qualitatively but not correct quantitatively and a relevant non-Stokes relation of the interaction between the two phases should be specified when the particle Reynolds number is higher than unity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a general self-consistent theory of evolution and propagation of wavelets on the galactic disk. A simplified model for this theory, i. e. the thin transition-layer approximation is proposed.There are three types of solutions to the basic equation governing the evolution of wavelets on the disk: (ⅰ) normal propagating type; (ⅱ) swing type; (ⅲ) general evolving type. The results show that the first two types are applicable to a certain domain on the galactic disk and a certain region of the wave number of wavelets. The third is needed to join the other two types and to yield a coherent total picture of the wave motion. From the present theory, it can be seen that the well-known "swing theory" of the G-L sheet model holds only for a certain class of basic states of galaxies.