76 resultados para Non-thermal plasma
Resumo:
The present study is focused on improvement of the adhesion properties of the interface between plasma-sprayed coatings and substrates by laser cladding technology (LCT), Within the laser-clad layer there is a gradient distribution in chemical composition and mechanical properties that has been confirmed by SEM observation and microhardness measurement. The residual stress due to mismatches in thermal and mechanical properties between coatings and substrates can be markedly reduced and smoothed out. To examine the changes of microstructure and crack propagation in the coating and interface during loading, the three-point bending test has been carried out in SEM with a loading device. Analysis of the distribution of shear stress near the interface under loading has been made using the FEM code ANSYS, The experimental results show clearly that the interface adhesion can be improved with LCT pretreatment, and the capability of the interface to withstand the shear stress as well as to resist microcracking has been enhanced.
Resumo:
The arc-root attachment on the anode surface of a dc non-transferred arc plasma torch has been successfully observed using a novel approach. A specially designed copper mirror with a boron nitride film coated on its surface central-region is employed to avoid the effect of intensive light emitted from the arc column upon the observation of weakly luminous arc root. It is found that the arc-root attachment is diffusive on the anode surface of the argon plasma torch, while constricted arc roots often occur when hydrogen or nitrogen is added into argon as the plasma-forming gas.
Resumo:
Laminar plasma technology was used to produce ceramic hardened layers of Al2O3-40% mass Ni composite powders on stainless steel substrates. In order to investigate the influences of processing conditions on the morphologies of the surface modified layers, two different powder-feeding methods were tested, one with carrier gas called the powder injection method, and the other without carrier gas called powder transfers method. The microscopic investigations demonstrate that the cross-section of the clad layers consists of two distinct microstructural regions, in which the Al2O3 phases exhibit different growth mechanisms. When the powder transfers method is adopted, the number density and volume fraction of the Al2O3 particles increase considerably and their distributions exhibit zonal periodical characteristics. When the powder-feeding rate increases, the microstructure of the Al2O3 phases changes from a small globular to a long needle shape. Finite element simulations show that the transient thermo-physical features of the pool substances, such as solidification rate and cooling rate, influence strongly the mechanisms of the nucleation and the directional growth of the Al2O3 phases in the thermal processing.
Resumo:
A new failure mode is observed in circular brass foils induced by laser beam. The new failure is based on the following experimental facts : (1) the peripheries of the circular brass foils are fixed and the surfaces of the foils are radiated by laser beam ; (2) the laser beam used is considered to be non-Gaussian spatially, actually an approximately uniform distribution limited in a certain size spot ; (3) the pulse on time of laser beam should be 250 μs, i.e. so called long duration pulse laser. The failure process consists of three stages ; i.e. thermal bulging, localized shear deformation and perforation by plugging. The word reverse in reverse bulging and plugging mode means that bulging and plugging occur in the direction of incident laser beam. To study the newly-discovered type of failure quantitatively, analytical solutions for the axisymmetric temperature field and deflection curve are derived. The calculated results show that the newly discovered failure mode is attributed to the spatial structure effect of laser beam indeed.
Resumo:
The process of die swell in polymer jets is an important feature within polymer processing and can be explained through a study of its rheological effects. The existence of a thermocapillary effect, driven by the gradient of its surface tension, should be considered when examining a thermal jet that has a non-uniform temperature distribution on its free surface, as in various polymer processings. Both the rheological effect and thermocapillary effect on die swell can be studied numerically through a finite element method as used on a two-dimensional and unsteady model, in which a Coleman-Noll second-order fluid model is employed. The results show that the expanding angle depends on both the rheological property of the fluid and the pressure at the vessel exit. Although both the thermocapillary and the rheological effects contribute to the cross-section expansion of the fluid jet, the latter is more important in determining the expansion.
Resumo:
The usual plasma spraying methods often involve entrainment of the surrounding air into the turbulent plasma core and result in coated materials having relatively high porosity and low adhesive strength. Therefore, exploration of new plasma spraying methods for fabricating high quality coatings to meet the requirement of special applications will be quite important. In this study, an alternative plasma spraying method, i.e. the low-pressure laminar plasma spraying process, is investigated and used in an attempt for spraying thermal barrier coatings (TBCs). Investigations on the characteristics of the laminar plasma jets, feeding methods for the ceramic powder and the formation process of the individual quenched splats have been carried out. The properties of the TBCs sprayed by laminar plasma jet process, such as the adhesive strength at the interface of the ceramic coating/bond coat, the surface roughness and microstructure, are examined by tensile tests and scanning electron microscope (SEM) observations.
Resumo:
Non-equilibrium molecular dynamics (NEMD) simulations are performed to calculate thermal conductivity. The environment-dependent interatomic potential (EDIP) potential on crystal silicon is adopted as a model system. The issues are related to nonlinear response, local thermal equilibrium and statistical averaging. The simulation results by non-equilibrium molecular dynamics show that the calculated thermal conductivity decreases almost linearly as the film thickness reduced at the nanometre scale. The effect of size on the thermal conductivity is also obtained by a theoretic analysis of the kinetic theory and formulas of the heat capacity. The analysis reveals that the contributions of phonon mean free path (MFP) and phonon number in a finite cell to thermal conductivity are very important.
Resumo:
A generalized model for the effective thermal conductivity of porous media is derived based on the fact that statistical self-similarity exists in porous media. The proposed model assumes that porous media consist of two portions: randomly distributed non-touching particles and self-similarly distributed particles contacting each other with resistance. The latter are simulated by Sierpinski carpets with side length L = 13 and cutout size C = 3, 5, 7 and 9, respectively, depending upon the porosity concerned. Recursive formulae are presented and expressed as a function of porosity, ratio of areas, ratio of component thermal conductivities and contact resistance, and there is no empirical constant and every parameter has a clear physical meaning. The model predictions are compared with the existing experimental data, and good agreement is found in a wide range of porosity of 0.14-0.80, and this verifies the validity of the proposed model.
Resumo:
Results observed experimentally are presented, about the DC arc plasma jets and their arc-root behaviour generated at reduced gas pressure without or with an applied magnetic field. Pure argon, argon-hydrogen or argon- nitrogen mixture was used as the plasma-forming gas. A specially designed copper mirror was used for a better observation of the arc-root behaviour on the anode surface of the DC non-transferred arc plasma torch. It was found that in the cases without an applied magnetic field, the laminar plasma jets were stable and approximately axisymmetrical. The arc-root attachment on the anode surface was completely diffusive when argon was used as the plasma-forming gas, while the arc-root attachment often became constrictive when hydrogen or nitrogen was added into the argon. As an external magnetic field was applied, the arc root tended to rotate along the anode surface of the non-transferred arc plasma torch.
Resumo:
In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.
Resumo:
A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequency range of 10-10(2) Hz which includes most industry ac arc frequencies. (C) 1994 Academic Press, Inc.
Resumo:
In the plasma processing of ultrafine particles of material, the heat transfer and force are considerably affected by particle charging. In this communication a new model, including thermal electron emission and incorporating the effect of electric field near the particle surface, is developed for metallic spherical particles under the condition of a thin plasma sheath. Based on this model, the particle floating potential, and thus the heat transfer and force, can be detemined more accurately and more realistically than previously.
Resumo:
A nonlinear theory of an intermediate pressure discharge column in a magnetic field is presented. Motion of the neutral gas is considered. The continuity and momentum transfer equations for charged particles and neutral particles are solved by numerical methods. The main result obtained is that the rotating velocities of ionic gas and neutral gas are approximately equal. Bohm's criterion and potential inversion in the presence of neutral gas motion are also discussed.
Resumo:
Experimentally observed, results are presented for the DCarcplasmajets and theirarc-rootbehaviors generated atreduced gas pressure and without or with an' applied magnetic field. Pure argon, argon -hydrogen or argon-nitrogen mixture is used as the plasma-forming gas. A specially designed copper mirror is constructed and used for better observing the arc-root behavior on the anode surface of the DC non-transferred arcplasma torch. It is shown that for the cases without applied magnetic field, the laminar plasmajets are stable and approximately axisymmetrical. The arc-root attachment on the anode surface is completely diffusive when argon is used as the plasma-forming gas, while the arc-root attachment often becomes constrictive when hydrogen or nitrogen is added into the argon. When an external magnetic field is applied, the arcroot tends to rotate along the anode surface of the non-transferred arcplasma torch.