33 resultados para Near and Middle Eastern Studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stratigraphic architecture, structure and Cenozoic tectonic evolution of the Tan-Lu fault zone in Laizhou Bay, eastern China, are analyzed based on interpretations of 31 new 2D seismic lines across Laizhou Bay. Cenozoic strata in the study area are divided into two layers separated by a prominent and widespread unconformity. The upper sedimentary layer is made up of Neogene and Quaternary fluvial and marine sediments, while the lower layer consists of Paleogene lacustrine and fluvial facies. In terms of tectonics, the sediments beneath the unconformity can be divided into four main structural units: the west depression, central uplift, east depression and Ludong uplift. The two branches of the middle Tan-Lu fault zone differ in their geometry and offset: the east branch fault is a steeply dipping S-shaped strike-slip fault that cuts acoustic basement at depths greater than 8 km, whereas the west branch fault is a relatively shallow normal fault. The Tan-Lu fault zone is the key fault in the study area, having controlled its Cenozoic evolution. Based on balanced cross-sections constructed along transverse seismic line 99.8 and longitudinal seismic line 699.0, the Cenozoic evolution of the middle Tan-Lu fault zone is divided into three stages: Paleocene-Eocene transtension, Oligocene-Early Miocene transpression and Middle Miocene to present-day stable subsidence. The reasons for the contrasting tectonic features of the two branch faults and the timing of the change from transtension to transpression are discussed. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Study on rheology of the lithosphere and the environments of the seismogenic layer is currently the basic project of the international earthquake research. Yunnan is the ideal place for studying this project. Through the multi-disciplinary comprehensive study of petrology, geophysics, seismo-geology, rock mechanics, etc., the depth-strength profiles of the lithosphere have been firstly constructed, and the seismogenic layer and its geophysical and tectonic environments in Yunnan have been systematically expounded in this paper. The related results achieved are of the important significances for further understanding the mechanism of strong earthquake generation, dividing the potential foci and exposing recent geodynamical processes in Yunnan. Through the comprehensive contrast of the metamorphic rocks in early and middle Proterozoic outcropping on the surface, DSS data and experimental data of rock seismic velocity under high temperature and high pressure, the petrological structure of the crust and upper mantle has been studied on Yunnan: the upper, middle and lower crust is composed of the metamorphic rocks of greenschist, amphibolite and granulite facies, respectively or granitoids, diorites and gabbros, respectively, and the upper mantle composed of the peridotites. Through the contrast studies of the heat flow and epicenters of the strong earthquakes, the distribution of the geotemperature and the data of focal depth, the relationship of between seismicity and geothermal structure of the lithosphere in Yunnan has been studied: the strong earthquakes with magnitude M ≥ 6.0 mainly take place at the geothermal gradient zone, and the seismic foci densely distribute between 200~500 ℃ isogeotherms. On the basis of studies of the rock properties and constituents of the crust and upper mantle and geothermal structure of the lithosphere, the structure of the rheological stratification of the lithosphere has been studied, and the corresponding depth-strength profiles have been constructed in Yunnan. The lithosphere in majority region of Yunnan has the structure of the rheological stratification, i.e. the brittle regime in the upper crust or upper part of the upper crust, ductile regime in the middle crust or lower part of the upper crust to middle crust, ductile regime in the lower crust and ductile regime in the subcrustal lithosphere. The rheological stratification has the quite marked lateral variations in the various tectonic units. The distributions of the seismogenic layer have been determined by using the high accurate data of focal depth. Through the contrast of the petrological structure, the structure of seismic velocity, electric structure, geotemperature structure, and rheological structure and the study of the focal mechanism in the seismogenic layer, the geophysical environments of the seismogenic layer in Yunnan have been studied. The seismogenic layer in Yunnan is located at the depths of 3 ~ 20 km; the rocks in the seismogenic layer are composed of the metamorphic rocks of greenschist to amphibolite facies (or granites to diorites); the seismogenic layer and its internal focal regions of strong earthquakes have the structure of medium properties with the relatively high seismic velocity, high density and high resistivity; there exists the intracrustal low seismic velocity and high conductivity layer bellow the seismogenic layer, the geotemperature is generally 100~500 ℃ in the depth range in which the seismogenic layer is located. The horizontal stress field predominates in the seismogenic layer, the seismogenic layer corresponds to the brittle regime of the upper crust or brittle regime of the upper crust to semibrittle regime of the middle crust. The formation of the seismogenic layer, preparedness and occurrence of the strong earthquakes is the result of the comprehensive actions of the source fault, rock constituent, structure of the medium properties, distribution of the geotemperature, rheological structure of the seismogenic layer and its external environments. Through the study of the structure, active nature, slip rate, segmentation of the active faults, and seismogenic faults, the tectonic environments of the seismogenic layer in Yunnan have been studied. The source faults of the seismogenic layer in Yunnan are mainly A-type ones and embody mainly the strike slip faults with high dip angle. the source faults are the right-lateral strike slip ones with NW-NNW trend and left-lateral strike slip ones with NE-NEE trend in Southwestern Yunnan, the right-lateral strike slip ones with NNW trend and left-lateral strike slip ones with NNE trend (partially normal ones) in Northwestern Yunnan, the right-lateral strike slip ones with NWW trend in Central Yunnan and left-lateral strike slip ones with NW-NNW trend in Eastern Yunnan. Taking Lijiang earthquake with Ms = 7.0 for example. The generating environments of the strong earthquake and seismogenic mechanical mechanism have been studied: the source region of the strong earthquake has the media structure with the relatively high seismic velocity and high resistivity, there exists the intracrustal low velocity and high conductivity layer bellow it and the strong earthquakes occur near the transitional zone of the crustal brittle to ductile deformation. These characteristics are the generality of the generating environments of strong earthquakes. However, the specific seismogenic tectonic environments and action of the stress field of the seismic source in the various regions, correspondingly constrains the dislocation and rupture mechanical mechanism of source fault of strong earthquake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Asia, the significant environment changes in Cenozoic include: uplift of Himalayas and Tibetan Plateau, formation Asian monsoon system, Aridification in Central Asia. One of major advances in recent studies of eolian deposit on the Loess Plateau is the verification of the eolian origin for the Late Tertiary Hipparion Red-Earth (also called red-Clay) underlying the Quaternary loess. Thus, the Late Tertiary eolian deposit, which has been proven a nearly continuous terrestrial record and sensitive to climate change, provides us an important archive to understand these above Cenozoic environment events. The deposit in eastern Loess Plateau has been extensively studied, while the property and age of deposit underlying the Quaternary loess in western plateau remains unclear. In this paper, detail investigations were made on the Sedimentology, geochemistry of Longxi section, a typical section in western Loess Plateau, to address its origin, and on micromammalian fossils and magnetostratigraphy to address its age. The main conclusions are presented as following: 1. The sedimentological and geochemical properties in Longxi section are highly similar to typical Quaternary eolian deposit in Loess Plateau. Nearly 100 paleosols are recognized in the field, and the grain size are very fine with the median grain size centered at 4~7μm. There is a good agreement of both major and trace element compositions between Longxi deposit and the Quaternary Loess. The REE distribution patterns of Longxi deposit and the Quaternary loess are remarkably similar in shape, with enrichment LREE and fairly flat HREE profiles and clear negative Eu anomaly. The mangnetic minerals in Longxi deposit are mainly magnetite, hematite and maghematite, which are similar to those of the Hipparion Red-Earth and Quaternary Loess. The major difference among them is that the samples from Longxi section contain more hematite. The characteristics of anisotropy of magnetic susceptibility (AMS) in Longxi deposit is highly consistent with that of Quaternary loess, while values of the major AMS parameters, e.g. anisotropy degree, magnetic foliation and lineation, are significantly lower than those of fluvial and lake deposits. These evidences indicate an eolian origin for the sediment. 2. An investigation of micromammalian fossils was firstly carried out for determining the approximate age of the sequence because of lack of materials for accurate isotope dating. Three fossil assemblages were obtained which indicate a chronological range from the Middle Miocene to Late Miocene. The magnetostratigraphical study suggests that it is a near continuous terrestrial record for the period from 13.23 to 6.23 MaB.P. The obtained chronology is highly consistent with fossils assemblages. This section is the oldest eolian deposit presently known in Loess Plateau. 3. The magnetic susceptibly value is high in paleosols than in surrounded weak-weathered layers, which suggests that it may be a climate index on orbital time scale. While it cannot be used as a proxy to address the long-term, change of climate on tectonic time scale, as content of the magnetic minerals is highly variable in different parts of the section. 4. The appearance of Middle Miocene eolian deposit in the Loess Plateau marks the strengthening of aridification of Central Asia. The high degree of similarity between the geochemical properties of Longxi eolian deposit, Hipparion Red-Earth and Quaternary loess a suggests that a rather similar source provenance. The dust accumulation rate (DAR) of Longxi section, which is widely used as a proxy to document the aridity in source areas in marine and terrestrial record studies, recorded the aridity condition in northwestern China over a period from Middle Miocene to Late Miocene. The DAR of the section shows that the continent aridity remains moderate and relative stable over that period.