134 resultados para Nanocrystalline titanium dioxide
Resumo:
Defects induced by plastic deformation in electrodeposited, fully dense nanocrystalline (nc) Ni with an average grain size of 25 nm have been characterized by means of high resolution transmission electron microscopy. The nc Ni was deformed under uniaxial tension at liquid-nitrogen temperature. Trapped full dislocations were observed in the grain interior and near the grain boundaries. In particular, these dislocations preferred to exist in the form of dipoles. Deformation twinning was confirmed in nc grains and the most proficient mechanism is the heterogeneous nucleation via emission of partial dislocations from the grain boundaries.
Resumo:
Nanocrystalline materials are characterized by a typical grain size from 1 to 100nm. In order to study the nanocrystalline properties of nanocrystalline materials, we chose nanocrystalline coppers as the research object. The uniaxial tensile deformation of computer produced nanocrystalline coppers is simulated by using molecular dynamics with Finnis-Sinclair potential. The mean grain size of simulated nanocrystalline coppers is varied within the 5.38 to 1.79 nm range. The strength, Young's modulus and stress-strain are strongly depended on the grain size and nanocrystalline structure. The simulated nanocrystalline coppers show a reverse Hall-Petch effect.
Resumo:
Using high-resolution electron microscopy, localized solid-state amorphization (SSA) was observed in a nanocrystalline (NC) Al solid solution (weight per cent 4.2 Cu, 0.3 Mn, the rest being Al) subjected to a surface mechanical attrition treatment. It was found that the deformation-induced SSA may occur at the grain boundary (GB) where either the high density dislocations or dislocation complexes are present. It is suggested that lattice instability due to elastic distortion within the dislocation core region plays a significant role in the initiation of the localized SSA at defective sites. Meanwhile, the GB of severely deformed NC grains exhibits a continuously varying atomic structure in such a way that while most of the GB is ordered but reveals corrugated configurations, localized amorphization may occur along the same GB.
Resumo:
Generalized planar fault energy (GPFE) curves have been used to predict partial-dislocation-mediated processes in nanocrystalline materials, but their validity has not been evaluated experimentally. We report experimental observations of a large quantity of both stacking faults and twins in nc Ni deformed at relatively low stresses in a tensile test. The experimental findings indicate that the GPFE curves can reasonably explain the formation of stacking faults, but they alone were not able to adequately predict the propensity of deformation twinning.
Resumo:
Cylindrical specimens (4 mm diameter and 4 mm height) of titanium alloy bar were given various heat treatments to provide a wide range of microstructures and mechanical parameters. These specimens were then subjected to high plastic strain at a large strain rate (103 s-1 ) during dynamic compression by a split Hopkinson bar at ambient temperature. The microstructures of the localised shear bands were examined by optical and transmission electron microscopy. The results show that there are two types of localised shear bands: deformed and white shear bands. A detailed observation reveals that there is no difference in the nature of the deformed and white shear bands, but they occur at different stages of localised deformation. It is found that there is a burst of strain, corresponding to a critical strain rate at which the white shear band occurs and no phase transformation occurs in the shear bands.
Resumo:
纳米材料是由尺度在1~100 nm的微小颗粒组成的体系,由于它具有独特的性能而备受关注.本文简要地回顾了分子动力学在纳米材料研究中的应用,并运用它模拟了平均晶粒尺寸从1.79~5.38nm的纳米晶体的力学性质.模拟结果显示:随着晶粒尺寸的减小,系统与晶粒内部的原子平均能量升高,而晶界上则有所下降;纳米晶体的弹性模量要小于普通多晶体,并随着晶粒尺寸的减小而减小;纳米晶铜的强度随着晶粒的减小而减小,显示了反常的Hall-Petch效应;纳米晶体的塑性变形主要是通过晶界滑移与运动,以及晶粒的转动来实现的;位错运动起着次要的、有限的作用;在较大的应变下(约大于5%),位错运动开始起作用;这种作用随着晶粒尺寸的增加而愈加明显.
Resumo:
Nanocrystalline (nc) materials are characterized by a typical grain size of 1-100nm. The uniaxial tensile deformation of computer-generated nc samples, with several average grain sizes ranging from 5.38 to 1.79nm, is simulated by using molecular dynamics with the Finnis-Sinclair potential. The influence of grain size and temperature on the mechanical deformation is studied in this paper. The simulated nc samples show a reverse Hall-Petch effect. Grain boundary sliding and motion, as well as grain rotation are mainly responsible for the plastic deformation. At low temperatures, partial dislocation activities play a minor role during the deformation. This role begins to occur at the strain of 5%, and is progressively remarkable with increasing average grain size. However, at elevated temperatures no dislocation activity is detected, and the diffusion of grain boundaries may come into play.
Resumo:
In this paper the microstructure characteristic of the cold-rolled deformed nanocrystalline Nickel metal has been studied by transmission electron microscopy (TEM). The results show that there were step structures near by grain boundary (GB), and the contrast of stress field in front of the step corresponds to the step in the shape. It indicates that the interaction between twins and dislocations is not a necessary condition to realizing the deformation. In the later stage of the deformation when the grain size became about 100 nm, the deformation occurs only depend upon the moving of the boundary of the stack faults (SFs) which result from the imperfection dislocations emitted from GBs. In the other word, the movement of the boundary dislocations of SFs results to growing-up of the size of the SFs, therefore realizes deformation. However, when the size of stack faults grows up, the local internal stress which is in front of the step gradually becomes higher. When this stress reach a critical value stopping the gliding of the partial dislocations, the SFs will stop growing up and leave a step structure behind.
Resumo:
Extensive transmission electron microscopy examinations confirm that twinning does occur upon large plastic deformation in nanocrystalline Ni, for which no sign of deformation twinning was found in previous tensile tests. Compelling evidence has been obtained for several twinning mechanisms that operate in nanocrystalline grains, with the grain boundary emission of partial dislocations determined as the most proficient. (c) 2006 American Institute of Physics.
Resumo:
In the present research, microstructures of the surface-nanocrystalline Al alloy material are observed and measured based on the transmission electron microscopy (TEM) technique, and the corresponding mechanical behaviors are investigated experimentally and theoretically. In the experimental research, the nanoindentation test method is used, and the load and microhardness curves are measured, which strongly depend on the grain size and grain size nonuniformity. Two kinds of the nanoindentation test methods are adopted: the randomly selected loading point method and the continuous stiffness method. In the theoretical modeling, based on the microstructure characteristics of the surface-nanocrystalline Al alloy material, a dislocation pile-up model considering the grain size effect and based on the Mott theory is presented and used. The hardness-indent depth curves are predicted and modeled.
Resumo:
The microstructure of computer generated nanocrystalline coppers is simulated by using molecular dynamics with the Finnis-Sinclair potential, analysed by means of radial distribution functions, coordination number, atomic energy and local crystalline order. The influence of the grain size on the nanocrystalline structure is studied. The results reveal that as the grain size is reduced, the grain boundary shows no significant structural difference, but the grain interior becomes more disordered, and their structural difference diminishes gradually; however, the density and the atomic average energy of the grain boundary present different tendencies from those of the grain interior.
Resumo:
The microstructure characteristic of the cold-rolled deformed nanocrystalline nickel metal is studied by transmission electron microscopy. The results show that there are step structures nearby the grain boundary (GB), and the contrast of stress field in front of the step corresponds to the step in the shape. It is indicated that the interaction between twins and dislocations is not a necessary condition to realizing the deformation. In the later stage of the deformation when the grain size becomes about 100nm, the deformation can depend upon the moving of the boundary of the stack faults (SFs) which result from the partial dislocations emitted from GBs. However, when the size of SFs grows up, the local internal stress which is in front of the step gradually becomes higher. When this stress reaches a critical value which stops the gliding of the partial dislocations, the SFs will stop to grow up and leave a step structure behind.
Resumo:
The refractive index and thickness of SiO2 thin films naturally grown on Si substrates were determined simultaneously within the wavelength range of 220-1100 nm with variable-angle spectroscopic ellipsometry. Different angles of incidence and wavelength ranges were chosen to enhance the analysis sensitivity for more accurate results. Several optical models describing the practical SiO2-Si system were investigated, and best results were obtained with the optical model, including an interface layer between SiO2 and Si, which proved the existence of the interface layer in this work as described in other publications.
Resumo:
The nanocrystalline (nc) formation was studied in cobalt (a mixture of c (hexagonal close packed) and gamma (face-centered cubic) phases) subjected to surface mechanical attrition treatment. Electron microscopy revealed the operation of {10(1) over bar 0}< 11(2) over bar 0 > prismatic and {0001}< 11(2) over bar 0 > basal slip in the E phase, leading to the successive subdivision of grains to nanoscale. In particular, the dislocation splitting into the stacking faults was observed to occur in ultrafine and nc grains. By contrast, the planar dislocation arrays, twins and martensites were evidenced in the gamma phase. The strain-induced gamma ->epsilon martensitic transformation was found to progress continuously in ultrafine and nc grains as the strain increased. The nc formation in the gamma phase was interpreted in terms of the martensitic transformation and twinning.
Resumo:
Based on the microscopic observations and measurements, the mechanical behavior of the surface-nanocrystallized Al-alloy material at microscale is investigated experimentally and theoretically. In the experimental research, the compressive stress-strain curves and the hardness depth curves are measured. In the theoretical simulation, based on the material microstructure characteristics and the experimental features of the compression and indentation, the microstructure cell models are developed and the strain gradient plasticity theory is adopted. The material compressive stress-strain curves and the hardness depth curves-are predicted and simulated. Through comparison of the experimental results with the simulation results, the material and model parameters are determined.