140 resultados para NICKEL COMPOUNDS - Pressure Effects
Resumo:
Ultrahigh pressure technique was employed to extract ginsenosides from roots of ginseng (Panax ginseng C.A. Meyer). The optimal conditions for ultrahigh pressure extraction (UPE) of total ginsenosides were quantified by UV-vis spectrophotometry with the ginsenoside Re as standard, the signal ginsenosides were quantified by HPLC and ELSD with ginsenosides Re, Rg(1), Rb-1, Rc and Rb-2 as standards. Orthogonal design was applied to evaluate the effects of four independent factors (extraction pressure, extraction temperature, extraction time and ethanol concentration) on the yield and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of ginsenoside, which are based on microwave extraction (ME), ultrasound extraction (UE), soxhlet extraction (SE) and heat reflux extraction (HRE) method. The results showed that UPE method can produce ginsenoside with the highest yield and the best radical scavenging activity compared to other used ones. Scanning electron microscopic (SEM) images of the plant cells after ultrahigh pressure treatment was obtained to provide visual evidence of the disruption effect.
Resumo:
The Cubic LaNi2 Laves phase has been synthesized under high pressure. The effects of temperature and pressure on the stability of the Laves phase have been studied. High pressure also induces the phase transitions from intermetallic compounds La2Ni3 and LaNi2.286 to the Laves phase.
Resumo:
With the aid of Sanchez-Lacombe lattice fluid theory (SLLFT), the phase diagrams were calculated for the system cyclohexane (CH)/polystyrene (PS) with different molecular weights at different pressures. The experimental data is in reasonable agreement with SLLFT calculations. The total Gibbs interaction energy, g*(12) for different molecular weights PS at different pressures was expressed, by means of a universal relationship, as g(12)* =f(12)* + (P - P-0) nu*(12) demixing curves were then calculated at fixed (near critical) compositions of CH and PS systems for different molecular weights. The pressures of optimum miscibility obtained from the Gibbs interaction energy are close to those measured by Wolf and coworkers. Furthermore, a reasonable explanation was given for the earlier observation of Saeki et al., i.e., the phase separation temperatures of the present system increase with the increase of pressure for the low molecular weight of the polymer whereas they decrease for the higher molecular weight polymers. The effects of molecular weight, pressure, temperature and composition on the Flory Huggins interaction parameter can be described by a general equation resulting from fitting the interaction parameters by means of Sanchez-Lacombe lattice fluid theory.
Resumo:
The precociously sexual maturation in large yellow crocker Pseudosciaena crocea has become a serious problem. In an attempt to solve this problem, the production of sterile triploids could be an effective strategy. In this study, triploid P. crocea was obtained by subjecting fertilized eggs to pressure shock. Flow-cytometry analysis was used to assess ploidy level. In terms of triploid rate and hatching rate, the optimal conditions of pressure shock for triploidy induction in P. crocea were 7500 psi for 3 min shock at 3 min after fertilization at 20 degrees C. With the application of these parameters, 100% triploid fish were produced. During the first rearing year, triploid P. crocea had a similar growth performance compared with its diploid counterpart before the age of 8 months and showed a significant advantage at the age of 10 and 12 months in body weight and body length (P < 0.05). At the age of 12 months, the carcass weight of triploids was markedly higher than that of diploid control, and gonadal somatic index was significantly lower than that of their diploid control. During the first rearing year, survival in triploid group was 76.44%, inferior to its diploid control (83.21%).
Resumo:
Indirect immunofluorescence staining was used to detect cytological changes of isolated blastodisks during mitosis of flounder haploid eggs treated with hydrostatic pressure. Changes in microtubule structure and expected cleavage suppression were observed from blastodisk formation to the third cell cycle, with obvious differences between treated and control eggs. In most eggs, microtubules were disassembled and the nucleation capacity of the centrosome was temporarily inhibited after pressure treatment. Within 15-20 min after treatment, the nucleation capacity of the centrosome began to gradually recover, with slow regeneration of microtubules; approximately 25 min after treatment, the nucleation capacity of the centrosome recovered completely, regenerated distinct bipolar spindles, and the first mitosis ensued. During the second cell cycle, approximately 61% of the embryos were at the two-cell stage, with a monopolar spindle in each blastomere; that treatment was effective was based on second cleavage blockage. Approximately 15% of the eggs still remained at the one-cell stage and had a monopolar spindle (treatment was effective, according to the general model of first cleavage blockage). However, treatment was ineffective in approximately 15% of the embryos (bipolar spindle in each blastomeres) and in another 8% (bipolar spindle in one of the two blastomeres and a monopolar spindle in the other; both mechanisms operating in different parts of the embryo). This is the first report elucidating mitotic gynogenetic diploid induction by hydrostatic pressure in marine fishes and provides a cytological basis for developing an efficient method of inducing mitotic gynogenesis in olive flounder. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
An approach for the separation and identification of components in a traditional Chinese medicine Psoralea corylifolia was developed. Ion-exchange chromatography (IEC) was applied for the fractionation of P corylifolia extract, and then followed by concentration of all the fractions with rotary vacuum evaporator. Each of the enriched fractions was then further separated on an ODS column with detection of UV absorbance and atmospheric pressure chemical ionization mass spectrometer (APCI/MS), respectively, and also analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) with matrix of oxidized carbon nanotubes. Totally more than 188 components in P. corylifolia extract were detected with this integrated approach, and 12 of them were preliminary identified according to their UV spectra and mass spectra performed by APCI/MS and MALDI-TOF/MS. The obtained analytical results not only demonstrated the powerful resolution of integration IEC fractionation with reversed-phase liquid chromatography (RPLC)-APCI/MS and MALDI-TOF/MS for analysis of compounds in a complex sample, but also exhibited the superiority of APCI/MS and MALDI-TOF/MS for identification of low-mass compounds, such as for study of traditional Chinese medicines (TCMs) and metabolome. (c) 2005 Published by Elsevier B.V.
Resumo:
A hyphenated method for the isolation and identification of components in a traditional Chinese medicine of Honeysuckle was developed. Ion-exchange chromatography (IEC) was chosen for the fractionation of Honeysuckle extract, and then followed by concentration of all the fractions with rotary vacuum evaporator. Each of the enriched fractions was then further analyzed by reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer (RPLC-APCI/MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) with matrix of oxidized carbon nanotubes, respectively. It can be noted totally more than 117 components were detected by UV detector, APCI/MS and MALDI-TOF/MS in Honeysuckle extract except the, 145 components identified by MALDI-TOF/MS alone with this integrated approach, and 7 of them were preliminary identified according to their UV spectra and mass spectra performed by APCI/MS and MALDI-TOF/MS, respectively. The obtained analytical results not only indicated the approach of integration IEC fractionation with RPLC-APCI/MS and MALDI-TOF/MS is capable of analyzing complex samples, but also exhibited the potential power of the mass spectrometer in detection of low-mass compounds, such as traditional Chinese medicines (TCMs) and complex biological samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of La2O3 addition on the microstructure and wear properties of laser clad gamma/C(r)7C(3)/TiC composite coatings on gamma-TiAl intermetallic alloy substrates with NiCr-Cr3C2 precursor mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometer (EDS) and block-on-ring wear tests. The responding wear mechanisms are discussed in detail. The results are compared with that for composite coating without La2O3. The comparison indicates that no evident new crystallographic phases are formed except a rapidly solidified microstructure consisting of the primary hard Cr7C3 and TiC carbides and the gamma/Cr7C3 eutectics distributed in the tough gamma nickel solid solution matrix. Good finishing coatings can be achieved under a proper amount of La2O3-addition and a suitable laser processing parameters. The additions of rare-earth oxide La,03 can refine and purify the microstructure of coatings, relatively decrease the volume fraction of primary blocky Cr7C3 to Cr7C3/gamma eutectics, reduce the dilution of clad material from base alloy and increase the microhardness of the coatings. When the addition of La2O3 is approximately 4 wt.%, the laser clad composite coating possesses the highest hardness and toughness. The composite coating with 4 wt.%La2O3 addition can result the best enhancement of wear resistance of about 30%. However, too less or excessive addition amount of La2O3 have no better influence on wear resistance of the composite coating.
Resumo:
Centrifuge experiments are carried out to investigate the responses of suction bucket foundations under horizontal dynamic loading. The effects of loading amplitude, the size of the bucket and the structural weight on the dynamic responses are investigated. It is shown that, when the loading amplitude is over a critical value, the sand at the upper part around the bucket softens or even liquefies. The liquefactio...
Resumo:
The liquefaction of loess under dynamic loading is studied experimentally with a dynamic triaxial test system. The effects of over-consolidation ratio (OCR), saturation degree and the frequency of dynamic loading upon loess liquefaction are investigated. The development of pore pressure within loess samples is also discussed. Based on the experimental results, the empirical relationship between pore pressure ratio and loading cycle number ratio is established for normal consolidated saturated loess.
Resumo:
Orthogonal designs are used to investigate the main factors when doing experiments in which pulse bias is superimposed on d.c. bias during cathodic are deposition of TiN. Pulse peak, duty cycle, frequency, direct voltage, are current and pressure all are investigated when coating TiN on HSS substrates. Roughness, surface micrograph, microhardness and thickness are tested. By analysis of variance, it is shown that pressure and frequency are the main factors. R-a and droplet density of the film with (d.c. + pulse) bias decrease. A simple explanation for the result is suggested.
Resumo:
Efforts have been made in growing bulk single crystals of GaN front supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. Different mineralizers such as amide or azide and temperatures in the range of 200-600degreesC have been used to increase the solubility. The pressure is from 1 to 4 kbar. Modeling of the ammonothermal growth process has been used to identify factors which may affect the temperature distribution, fluid flow and nutrient transport. The GaN charge is considered as a porous media bed and the flow in the charge is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of baffle design and opening on flow pattern and temperature distribution in an autoclave are analyzed. Two cases are considered with baffle openings of 15% and 20% in cross-sectional area, respectively.
Resumo:
The effect of the translational nonequilibrium on performance modeling of flowing chemical oxygen-iodine lasers (COIL) is emphasized in this paper. The spectral line broadening (SLB) model is a basic factor for predicting the performances of flowing COIL. The Voigt profile function is a well-known SLB model and is usually utilized. In the case of gas pressure in laser cavity less than 5 torr, a low pressure limit expression of the Voigt profile function is used. These two SLB models imply that ail lasing particles can interact with monochromatic laser radiation. Basically, the inhomogeneous broadening effects are not considered in these two SLB models and they cannot predict the spectral content. The latter requires consideration of finite translational relaxation rate. Unfortunately, it is rather difficult to solve simultaneously the Navier-Stokes (NS) equations and the conservation equations of the number of lasing particles per unit volume and per unit frequency interval. In the operating condition of flowing COIL, it is possible to obtain a perturbational solution of the conservational equations for lasing particles and deduce a new relation between the gain and the optical intensity, i.e., a new gain-saturation relation. By coupling the gain-saturation relation with other governing equations (such as the NS equations, chemical reaction equations and the optical model of gain-equal-loss), We have numerically calculated the performances of flowing COIL. The present results are compared with those obtained by the common rate-equation (RE) model, in which the Voigt profile function and its low pressure limit expression are used. The difference of different model's results is great. For instance, in the case of lasing frequency coinciding with the central frequency of line profile and very low gas pressure, the gain-saturation relation of the present model is quite different with that of the RE model.